中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (12): 1764-1773 DOI: 10.7536/PC150621 Previous Articles   Next Articles

• Review and comments •

Olefin Polymerization in Confined Space

Wang Kui, Lei Jinhua*, Nie Heran, Zhou Guangyuan*   

  1. Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 51373163,21104073).
PDF ( 966 ) Cited
Export

EndNote

Ris

BibTeX

With the development of nanotechnology in recent years, there are many micro- and nano-reactors. The micro- and nano-reactor could provide a nano-sized reaction environment, so that reaction occurred in that environment is influenced by nano-confined space. Finally the resulting product with special structure is obtained. There are also many micro- and nano-reactor carriers with confined space for olefin polymerization. The carriers play a double role in the polymerization not only being the catalyst's carrier but also providing a confined geometry in which the polymerization reaction can occur. With the effect of nano scale the process of olefin polymerization changes, so that some polyolefin products with special structure and properties (such as high melting point, high molecular weight, and fibrous) will be obtained. In this paper, we mainly focus on recent research on olefin polymerization in confined space, and classify them according to different types of polymer structure, and then the influence of confined space on the morphology of the polyolefin product, the polymerization kinetic and activity, the primary structure of the product, the secondary structure of the product, the condensed matter structure and the property of the product are relatively introduced. Finally, the researches on olefin polymerization in confined space are also prospected.

Contents
1 Introduction
2 The effect of polymerization in confined space on the morphology of product
3 The effect of polymerization in confined space on the polymerization kinetic and activity
4 The effect of polymerization in confined space on the primary structure of the product
5 The effect of polymerization in confined space on the secondary structure of the product
6 The effect of polymerization in confined space on the condensed matter structure and the property of the product
7 Conclusion

CLC Number: 

[1] Wang N, Matsumoto T, Ueno M, Miyamura H, Kobayashi S. Angewandte Chemie, 2009, 121: 4838.
[2] Kobayashi J, Mori Y, Kobayashi S. Advanced Synthesis & Catalysis, 2005, 347: 1889.
[3] Miller P W, Long N J, de Mello A J, Vilar R, Audrain H, Bender D, Passchier J, Gee A. Angewandte Chemie International Edition, 2007, 46: 2875.
[4] Hisamoto H, Saito T, Tokeshi M, Hibara A, Kitamori T. Chemical Communications, 2001: 2662.
[5] Khlobystov A N. ACS nano, 2011, 5: 9306.
[6] Jahnisch K, Hessel V, Lowe H, Baerns M. Angewandte Chemie International Edition, 2004, 43: 406.
[7] Mason B P, Price K E, Steinbacher J L, Bogdan A R, McQuade D T. Chem. Rev., 2007, 107: 2300.
[8] Fletcher P D I, Haswell S J, Pombo-Villar E, Warrington B H, Watts P, Wong S Y F, Zhang X L. Tetrahedron, 2002, 58: 4735.
[9] Kolb G, Hessel V. Chem. Eng. J., 2004, 98: 1.
[10] Shi D, Hu G H, Li R K Y. Chem. Eng. Sci., 2006, 61: 3780.
[11] Kageyama K, Tamazawa J I, Aida T. Science, 1999, 285: 2113.
[12] Dong X, Wang L, Wang J, Zhou J, Sun T. The Journal of Physical Chemistry B, 2006, 110: 9100.
[13] Ye Z B, Zhu S P, Wang W J, Alsyouri H, Lin Y S. J. Polym. Sci. Pt. B-Polym. Phys., 2003, 41: 2433.
[14] Li D, Lei J, Wang H, Jiang M, Zhou G. Polymer bulletin, 2012, 68: 1565.
[15] Dong X, Wang L, Jiang G, Zhao Z, Sun T, Yu H, Wang W. Journal of Molecular Catalysis A: Chemical, 2005, 240: 239.
[16] Tudor J, O'Hare D. Chemical Communications., 1997: 603.
[17] Ye Z, Zhu S, Britten J F. Macromolecular Rapid Communications, 2006, 27: 1217.
[18] Covarrubias C, Quijada R. Catalysis Communications, 2009, 10: 995.
[19] Guo C, Zhang D, Wang F, Jin G X. Journal of Catalysis, 2005, 234: 356.
[20] Calleja G, Aguado J, Carrero A, Moreno J. Appl. Catal. A-Gen., 2007, 316: 22.
[21] Aguado J, Callej G, Carrero A, Moreno J. Chem. Eng. J., 2008, 137: 443.
[22] Silveira F, Petry C F, Pozebon D, Pergher S B, Detoni C, Stedile F C, dos Santos J H Z. Appl. Catal. A-Gen., 2007, 333: 96.
[23] Guo C, Jin G X, Wang F S. Journal of Polymer Science Part A-Polymer Chemistry, 2004, 42: 4830.
[24] Weckhuysen B M, Rao R R, Pelgrims J, Schoonheydt R A, Bodart P, Debras G, Collart O, van der Voort P, Vansant E F. Chem.-Eur. J., 2000, 6: 2960.
[25] Seddegi Z S, Budrthumal U, Al-Arfaj A A, Al-Amer A M, Barri S A I. Appl. Catal. A-Gen., 2002, 225: 167.
[26] Nair S, Naredi P, Kim S H. The Journal of Physical Chemistry B, 2005, 109: 12491.
[27] Lei J, Li D, Wang H, Wang Z, Zhou G. Journal of Polymer Science Part A:Polymer Chemistry, 2011, 49: 1503.
[28] Lei J, Li D, Wang H, Zhou G. Polymer, 2011, 52: 602.
[29] Tong X, Liu C, Cheng H M, Zhao H, Yang F, Zhang X. Journal of Applied Polymer Science, 2004, 92: 3697.
[30] Kaminsky W, Funck A, Klinke C. Topics in Catalysis, 2008, 48: 84.
[31] Park S, Choi I S. Advanced Materials, 2009, 21: 902.
[32] Choi K Y, Han J J, He B, Lee S B. Journal of the American Chemical Society, 2008, 130: 3920.
[33] Duran H, Steinhart M, Butt H J, Floudas G. Nano Letters, 2011, 11: 1671.
[34] Roscoe S B, Frechet J M J, Walzer J F, Dias A J. Science, 1998, 280: 270.
[35] Wang Y P, Cheng R L, Liang L L, Wang Y M. Compos. Sci. Technol., 2005, 65: 793.
[36] Kanagaraj S, Varanda F R, Zhil'tsova T V, Oliveira M S A, Simoes J A O. Compos. Sci. Technol., 2007, 67: 3071.
[37] Byrne M T, Gun'ko Y K. Advanced Materials, 2010, 22: 1672.
[38] Xu D H, Wang Z G. Polymer, 2008, 49: 330.
[39] Kodjie S L, Li L Y, Li B, Cai W W, Li C Y, Keating M. J. Macromol. Sci. Part B-Phys., 2006, 45: 231.
[40] Bikiaris D. Materials, 2010, 3: 2884.
[41] Laird E D, Li C Y. Macromolecules, 2013, 46: 2877.
[42] Hu Z, Liu C, Wu Y, Liu R, He Y, Luo S. Journal of Polymer Science Part B: Polymer Physics, 2011, 49: 812.
[43] Ahmadi E, Mohamadnia Z, Mashhadi-Malekzadeh A, Hamdi Z, Saghatchi F. Journal of Applied Polymer Science, 2013, 128: 4245.
[44] Xu L, Ye Z, Cui Q, Gu Z, Mercier L. Polymer, 2011, 52: 5961.
[45] Rossetto E, Nicola B P, de Souza R F, Bernardo-Gusmao K, Pergher S B C. Journal of Catalysis, 2015, 323: 45.
[46] Lee S Y, Kim S-K, Nguyen T M, Chung J S, Lee S B, Choi K Y. Macromolecules, 2011, 44: 1385.
[47] Sano T, Hagimoto H, Jin J, Oumi Y, Uozumi T, Soga K. Macromolecular Rapid Communications, 2000, 21: 1191.
[48] Paredes B, Grieken R V, Carrero A, Suarez I, Soares J B. Macromolecular Chemistry and Physics, 2011, 212: 1590.
[49] Kumkaew P, Wu L, Praserthdam P, Wanke S. Polymer, 2003, 44: 4791.
[50] Shao H Q, Zhou H, Guo X Y, Tao Y Q, Jiang T, Qin M G. Catalysis Communications, 2015, 60: 14.
[51] Ko Y S, Woo S I. Journal of Polymer Science Part A: Polymer Chemistry, 2003, 41: 2171.
[52] Uemura T, Yanai N, Kitagawa S. Chemical Society Reviews, 2009, 38: 1228.
[53] Liu B, Jie S Y, Bu Z Y, Li B G. J. Mol. Catal. A-Chem., 2014, 387: 63.
[54] Khezri K, Roghani-Mamaqani H, Sarsabili M, Sobani M, Mirshafiei-Langari S A. Polym. Sci. Ser. B, 2014, 56: 909.
[55] Park S, Yoon S W, Lee K B, Kim D J, Jung Y H, Do Y, Paik H j, Choi I S. Macromolecular Rapid Communications, 2006, 27: 47.
[56] Sano T, Oumi Y. Catalysis Surveys from Asia, 2004, 8: 295.
[57] Maiz J, Schäfer H, Trichy Rengarajan G, Hartmann-Azanza B, Eickmeier H, Haase M, Mijangos C, Steinhart M. Macromolecules, 2013, 46: 403.
[58] Maiz J, Martin J, Mijangos C. Langmuir, 2012, 28: 12296.
[59] Giussi J M, Blaszczyk-Lezak I, Susana Cortizo M, Mijangos C. Polymer, 2013, 54: 6886.
[60] Liu Z, Yu M, Wang J, Li F, Cheng L, Guo J, Huang Q, Zhou Y, Zhu B, Yi J, Liu Y, Yang W. Journal of Industrial and Engineering Chemistry, 2014, 20: 1804.
[61] Park H-J, Kim J, Seo Y, Shim J, Sung M-Y, Kwak S. Macromolecular Research, 2013, 21: 965.
[1] Haidi Feng, Lu Zhao, Yunfeng Bai, Feng Feng. The Application of Nanoscale Metal-Organic Frameworks for Tumor Targeted Therapy [J]. Progress in Chemistry, 2022, 34(8): 1863-1878.
[2] Meirong Li, Chenliu Tang, Weixian Zhang, Lan Ling. Performance and Mechanism of Aqueous Arsenic Removal with Nanoscale Zero-Valent Iron [J]. Progress in Chemistry, 2022, 34(4): 846-856.
[3] Shuzhang Qu, Taoyi Zhang, Wei Wang. Olefin Polymerization with Nitrogen-Coordinated Half-Metallocene Catalyst Systems [J]. Progress in Chemistry, 2019, 31(7): 929-938.
[4] Shifang Yuan, Lijing Wang, Qiuyue Zhang, Wenhua Sun. Tridentate Titanium Precatalysts Toward Olefin Polymerization [J]. Progress in Chemistry, 2017, 29(12): 1462-1470.
[5] Yuan Shifang, Niu Chunxia, Wei Xuehong, Sun Wenhua. ⅣB-Metal Complex Catalysts toward Olefin Polymerization and Copolymerization [J]. Progress in Chemistry, 2016, 28(7): 1070-1075.
[6] Zhang Yunfei, Yang Bo, Zhang Hong, Yu Gang, Deng Shubo, Liu Jianhong. Degradation of Halogenated Organic Contaminants with Hydrodehalogenation Using Supported Catalysts [J]. Progress in Chemistry, 2013, 25(12): 2159-2168.
[7] Li Yijing, Zhu Hao, Hou Chen, Jiang Yu, Li Yanfeng*. Hydrothermal & Solvothermal Synthesis of Nanoscale Magnetic Materials [J]. Progress in Chemistry, 2013, 25(0203): 276-287.
[8] Zhang Changwu, Chai Zhuo, Zhao Gang. Polymer-Supported Catalysts Designing, Synthesis and Their Application on Organic Synthetic Reaction [J]. Progress in Chemistry, 2010, 22(07): 1442-1456.
[9] Wang Haiming,Wang Zheng,Ding Kuiling. Recent Progress in Self-Supported Chiral Catalysts [J]. Progress in Chemistry, 2010, 22(07): 1471-1481.
[10] . Supramolecular Self-Assembly of Amphiphilic Calixarenes [J]. Progress in Chemistry, 2010, 22(0203): 388-399.
[11] . Olefin Polymerization with Half-Metallocene Catalyst Systems [J]. Progress in Chemistry, 2009, 21(04): 677-686.
[12]

Yu Nan1,2 Hou Zhaomin2** Xi Zhenfeng1**

. Cationic Complexes of Rare Earth Metals [J]. Progress in Chemistry, 2008, 20(10): 1515-1524.
[13]

Zhuang Xiaodong, Chen Yu**, Liu Ying, Cai Liangzhen**, Lin Ying

. Organic Nanoscale Functional Materials Formed by Self-Assembly [J]. Progress in Chemistry, 2007, 19(11): 1653-1661.
[14] Li Wenzhen1,Sun Gongquan1,Yan Yushan3,Xin Qin1,2*. Supported Noble Metal Electrocatalysts in Low Temperature Fuel Cells [J]. Progress in Chemistry, 2005, 17(05): 761-772.
[15] Chen Liyi,Yang Haijian,Sun Wenhua**. Advances of Olefin Polymerization in Aqueous Solutions [J]. Progress in Chemistry, 2003, 15(05): 401-.
Viewed
Full text


Abstract

Olefin Polymerization in Confined Space