中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (1): 51-57 DOI: 10.7536/PC150620 Previous Articles   Next Articles

• Review and comments •

Synthesis and Application of Main-or Side-Chain Ferrocene-Based Polymers

Kim Hyongdo, Wang Li*, Yu Haojie, Tong Rongbai, Zhou Weidong*   

  1. College of Chemical and Biological Engineering, State Key Laboratory of Chemical Engineering, Zhejiang University, Hangzhou 310027, China
  • Received: Revised: Online: Published:
PDF ( 1334 ) Cited
Export

EndNote

Ris

BibTeX

Ferrocene-based polymers have wide application prospect in various fields such as electrochemistry, biomedicine, optics and so on, because of their unique structures and properties. The synthesis and exploration of the application of the ferrocene-based polymers have become a hot topic. In this review, we mainly focus on the synthesis and applications of the main-chain ferrocene-based polymers or side-chain ferrocene-based polymers. For synthesis of main-chain ferrocene-based polymers, polycondensation reaction, ring-opening polymerization and other synthetic methods have been summarized. For synthesis of side-chain ferrocene-based polymers, free radical polymerization, atom transfer radical polymerization (ATRP) method, reversible addition-fragmentation chain transfer (RAFT) polymerization have been applied. Finally, the future applications of ferrocene-based materials are prospected.

Contents
1 Introduction
2 Synthesis of main-chain ferrocene-based polymers
2.1 Polycondensation reaction
2.2 Ring-opening polymerization
3 Synthesis of side-chain ferrocene-based polymers
3.1 Free-radical polymerization
3.2 RAFT polymerization 3.3 ATRP method
3.4 Other synthetic method
4 Application of ferrocene-based polymers
4.1 Application in electrochemistry
4.2 Application in biology and medicine
4.3 Application in liquid crystal
4.4 Other applications
5 Conclusion

CLC Number: 

[1] Turrin C O, Chiffre J, De Montauzon D, Daran J C, Caminade A M, Manoury E, Balavoine G, Majoral J P. Macromolecules, 2000, 33(20): 7328.
[2] Calleja G, Carre F, Cerveau G, Labbe P, Coche-Guerente L. Organometallics, 2001, 20(20): 4211.
[3] Sengupta S, Sadhukhan S K. Organometallics, 2001, 20(9): 1889.
[4] Manners I. J. Polym. Sci. Part A: Polym. Chem., 2002, 40(2): 179.
[5] Lammertink R G H, Hempenius M A, Manners I, Vancso G J. Macromolecules, 1998, 31(3): 795.
[6] Valerio C, Alonso E, Ruiz J, Blais J C, Astruc D. Angew. Chem. Int. Ed., 1999, 38(12): 1747.
[7] Wang L, Ye C Y, Zhang P Y, Pan J, Feng L X, Wang S F, Peng T Z. J. Appl. Polym. Sci., 2001, 82: 3258.
[8] Wang L, Ye C Y, Zhang P Y, Pan J, Feng L X, Wang S F, Peng T Z. Eur. Polym. J., 2002, 38: 531.
[9] Hmyene M, Yasser A, Escorne M, Percheronguegan A, Garnier F. Adv. Mater., 1994, 6: 564.
[10] MacLachlan M J, Lough A J, Geiger W E, Manners I. Organometallics, 1998, 17(9): 1873.
[11] Power-Billard K N, Manners I. Macromolecules, 2000, 33: 26.
[12] Jäkle F, Wang Z, Manners I. Macromol. Rapid Commun., 2000, 21: 1291.
[13] Macleod P J, Veregin R P N, Honeyman C H. US 6037091, 2000.
[14] Sun Q H, Lam J W Y, Xu K T. Chem. Mater., 2000, 12(9): 2617.
[15] Sun Q H, Xu K T, Lam J W Y. Macromolecules, 2003, 36(7): 2309.
[16] Yu H, Wang L, Huo J, Li C, Tan Q. Des. Monomers Polym.,2009, 12(4): 305.
[17] Akhter Z, Khan M, Bashir M. J. Inorg. Organomet. Polym.,2004, 14(4): 253.
[18] Akhter Z, Bashir M A, Khan M S. Appl. Organomet. Chem., 2005, 19(7): 848.
[19] Cazacu M, Munteanu G, Racles C, Vlad A, Marcu M. J. Organomet. Chem., 2006, 69(17): 3700.
[20] Wael A A, Wang L, Yu H J, Abid M A, Wang Y. J. Inorg. Organomet. Polym., 2012, 22: 1229.
[21] Wael A A, Wang L, Abid M A, Yu H J, Li C, Ma L. Des. Monomers Polym., 2013, 16(2): 160.
[22] Wael A A, Yu H J, Wang L, Sergey V, Tong R B. J. Inorg. Organomet. Polym., 2013, 23: 1431.
[23] Mehdipour-Ataei S, Babanzadeh S. React. Funct. Polym., 2007, 67(10): 883.
[24] Mehdipour-Ataei S, Babanzadeh S. Appl. Organomet. Chem., 2007, 21(5): 360.
[25] Mehdipour-Ataei S, Tadjarodi A, Babanzadeh S. Eur. Polym. J., 2007, 43(2): 498.
[26] Zhang G, Zhao T P, Wang Y L, Liu S L, Long S R, Yang J. J. Macromol. Sci. Part A: Pure Appl. Chem., 2010, 47(3): 291.
[27] Kishore K, Kannan P, lyanar K. J. Polym. Sci. Part A: Polym. Chem., 1991, 29(7): 1039.
[28] Abd-Alla M M, El-Zohry M F, Aly K I, Abd-EI-Wahab M M M. J. Appl. Polym. Sci., 1993, 47(2): 323.
[29] Kannan P, Umadevi S, Krishnasamy V, Swaminathan CS. Iran J. Polym. Sci. Technol., 1994, 3(1): 13.
[30] Carraher C E, Morie K. J. Inorg. Organomet. Polym. Mater., 2007, 17(1): 127.
[31] He W, Deng F, Jiang Y Y, Wu D, Fan H L, Jian X G. Chin. Chem. Lett., 2010, 21(6): 748.
[32] Yamamoto T, Morikita T, Maruyama T, Kubota K, Katada M. Macromolecules, 1997, 30(18): 5390.
[33] Yamaguchi I, Ishii H, Sakano T, Osakada K, Yamamoto T. Appl. Organomet. Chem., 2001, 15(3): 197.
[34] Neuse E W, Quo E. J. Polym. Sci. Part A: Polym. Chem., 1965, 3(4): 1499.
[35] Aly K I, Abdel Monem M I. J. Appl. Polym. Sci., 2005, 98(6): 2394.
[36] Asahara T, Seno M, Mitsuhashi K, Ichikawa Y. Bull. Chem. Soc. Jpn., 1971, 44(1): 207.
[37] Kulbaba K, Manners I. Macromol. Rapid Commun., 2011, 22(10): 711.
[38] Vogel U, Lough A J, Manners I. Angew. Chem. Int. Ed., 2004, 43(25): 3321.
[39] Wang J J, Wang L, Wang X J, Chen T, Yu H J, Wang W. Mater. Lett., 2006, 60(11): 1416.
[40] Yamashita H, Tanaka M, Honda K. J. Am. Chem. Soc., 1995, 117(34): 8873.
[41] Zechel D L, Hultzsch K C, Rulkens R, Balaishis D, Ni Y, Pudelski J K. Organometallics, 1996, 15(8): 1972.
[42] Tang H, Liu Y, Chen X, Qin J, Inokuchi M, Kinoshita M. Macromolecules, 2004, 37(26): 9785.
[43] Zhao D, Ren B, Liu S, Liu X, Tong Z. Chem. Commun., 2006, 7: 779.
[44] Rulkens R, Ni Y, Manners I. J. Am. Chem. Soc., 1994, 116: 12121.
[45] Ni Y, Rulkens R, Manners I. J. Am. Chem. Soc., 1996, 118: 4102.
[46] Temple K, Massey J A, Chen Z, Vaidya N, Berenbaum A, Foster M D. J. Inorg. Organomet. Polym., 1999, 9(4): 189.
[47] Arimoto F S, Haven A C. J. Am. Chem. Soc., 1955, 77: 6295.
[48] Pittman C U, Lai J C, Vanderpool D P, Good M, Prado R. Macromolecules, 1970, 3(6): 746.
[49] Pittman C U, Voges R L, Jones W B. Macromolecules, 1971, 4(3): 298.
[50] 高敬民(Gao J M). 浙江大学博士学位论文(Doctoral Dissertation of Zhejiang University), 2011.
[51] Shi M, Li A L, Liang H, Lu J. Macromolecules, 2007, 40(6): 1891.
[52] Xiao Z P, Cai Z H, Liang H, Lu J. J. Mater. Chem., 2010, 20(38): 8375.
[53] Herfurth C, Voll D, Buller J, Weiss J, Barner-Kowollik C, Laschewsky A. J. Polym. Sci. Part A: Polym. Chem., 2012, 50(1): 108.
[54] Hardy C G, Ren L, Tamboue T C, Tang C. J. Polym. Sci. Part A; Polym. Chem., 2011, 49(6): 1409.
[55] Yu H J, Wang L, Chen T. Eur. Polym. J., 2009, 45: 639.
[56] Xu L Q, Wan D, Gong H F, Neoh K G, Kang E T, Fu G D. Langmuir, 2010, 26(19): 15376.
[57] McAdam C I, Moratti S C, Robinson B H, Simpson J. J. Organomet. Chem., 2008, 693(16): 2715.
[58] Moore J S, Stupp S I. Macromolecules, 1990, 23(1): 65.
[59] Wilbert G, Zentel R. Macromol. Chem. Phys., 1996, 197: 3259.
[60] Wilbert G, Traud S, Zentel R. Macromol. Chem. Phys., 1997, 198: 3769.
[61] Xu J, Tian Y, Peng R, Xian Y, Ran Q, Jin L. Electrochem. Commun., 2009, 11(10): 1972.
[62] Zhang Q, Jiao L, Shan C, Yang G, Xu X, Niu L. Synth. Met., 2009, 159(14): 1422.
[63] Camurlu P, Bicil Z, Gultekin C, Karagoren N. Electrochim. Acta, 2012, 63: 245.
[64] Parab K, Jakle F. Macromolecules, 2009, 42(12): 4002.
[65] Paul S, Chavan N N, Radhakrishnan S. Synth. Met., 2009, 159(5/6): 415.
[66] Ion A, Ion I, Popescu A, Ungureanu M, Moutet J C, Saint-Aman E. Adv. Mater., 1997, 9(9): 711.
[67] Reynes O, Royal G, Chainet E, Moutet J C, Saint-Aman E. Electroanalysis, 2003, 15(l): 65.
[68] Winston G P, Cardoso M J, Williams E J. Epilepsia, 2013, 54(12): 2166.
[69] Edwardsei E I, Epton R, Marr G. J. Organomet. Chem., 1976, 122(3): 649.
[70] Smolander M, Gorton L, Lee H S, Skotheim T, Lan H L. Electroanalysis, 1995, 7(10): 941.
[71] Wu S, Chen Y, Zeng F, Gong S, Tong Z. Macromolecules, 2006, 39(20): 6796.
[72] Abasiyanik M F, Senel M. J. Electroanal. Chem., 2010, 639(1/2): 21.
[73] Zhang L, Sun H, Li D, Song S, Fan C, Wang S. Macromol. Rapid Commun., 2008, 29(17): 1489.
[74] Nanjo M, Cyr P W, Liu K, Sargent E H, Manners I. Adv. Funct. Mater., 2008, 18(3): 470.
[75] 刘玉婷(Liu Y T), 王捷(Wang J), 尹大伟(Yin D W). 精细化工(Fine Chemicals), 2013, 30(1): 69.
[76] 童开发(Tong K F), 刘明国(Liu M G), 田晓兵(Tian X B). 湖北三峡学院学报(Journal of China Three Gorges University), 1997, 19: 72.
[77] Singh P, Rausch M D, Lenz R W. Polym. Bull., 1989, 22(3): 247.
[78] Deschenaux R, Kosztics I, Scholten U, Guiilon D, Ibn-Elhaj M. J. Mater. Chem., 1994, 4(8): 1351.
[79] Wiesemann A, Zentel R, Pakula T. Polymer, 1992, 33(24): 5315.
[80] Ahmed R, Hsiao M S, Matsuura Y, Houbenov N, Paul C F J, Manners I. Soft Matter, 2011, 7(21): 10462.
[81] Sun R L, Wang L, Yu H J, Abdin Z, Chen Y S, Khalid H, Abbasi N, Akram M. J. Inorg. Organomet. Polym., 2014, 24: 1063.
[82] 周 磊(Zhou L), 王 立(Wang L), 俞豪杰(Yu H J), 高敬民(Gao J M), 丁文兵(Ding W B), 高浩其(Gao H Q). 材料科学与工程学报(Journal of Materials Science and Engineering), 2013, 31(3): 323.
[83] Abdin Z, Yu H J, Wang L, Abdin Z, Saleem M, Khalid H, Abbasi N, Akram M. Appl. Organomet. Chem., 2014, 28: 567.
[84] Tong R B, Zhao Y L, Wang L, Yu H J, Ren F J, Saleem M, Wael A A. J. Organomet. Chem., 2014, 755: 16.
[85] Li Q H, Chen X, Yue X. Colloid Surf. A; Physicochem. Eng. Asp., 2012, 409(9): 98.
[86] 王学杰(Wang X J), 王立(Wang L), 王建军(Wang J J). 功能高分子学报(Journal of Functional Polymers), 2002, 3(15): 368.
[87] MacLachlan M J, Lough A J, Geiger W E, Manners I. Organometallics, 1998, 17(9): 1873.
[88] 霍甲(Huo J). 浙江大学博士学位论文(Doctoral Dissertation of Zhejiang University), 2010.
[89] 陈涛(Chen T), 王立(Wang L), 王建军(Wang J J), 江国华(Jiang G H). 化学进展(Progress in Chemistry), 2004, 16(5): 797.
[90] Deng L B, Wang L, Yu H J, Dong X C, Jia H. Des. Monomers Polym., 2007, 10(2): 131.
[91] Whittell G R, Manners I. Adv. Mater., 2007, 19(21): 3439.
[92] Cyr P W, Rider D A, Kulbaba K. Macromolecules, 2004, 37(11): 3959.
[93] Arsenault A C, Miguez H, Kitaev V. Adv. Mater., 2003, 15(6): 503.
[94] MacLeod P J, Veregin R P N, Honeyman C H. US 6037091, 2000.
[95] Neuse E W, Woodhouse J R, Montaudo G, Puglisi C. Appl. Organomet. Chem., 1988, 2(l): 53.
[96] Bian S, He J, Schesing K B, Braunschweig A B. Small, 2012, 8(13): 2000.
[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[3] Xuedan Qian, Weijiang Yu, Junzhe Fu, Youxiang Wang, Jian Ji. Fabrication and Biomedical Application of Hyaluronic Acid Based Micro- and Nanogels [J]. Progress in Chemistry, 2023, 35(4): 519-525.
[4] Xinyue Wang, Kang Jin. Chemical Synthesis of Peptides and Proteins [J]. Progress in Chemistry, 2023, 35(4): 526-542.
[5] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[6] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[7] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[8] Xu Zhang, Lei Zhang, Shanen Huang, Zhifang Chai, Weiqun Shi. Preparation of Salt-Inclusion Materials in High-Temperature Molten Salt System and Their Potential Application [J]. Progress in Chemistry, 2022, 34(9): 1947-1956.
[9] Yehjun Lim, Yanmei Li. Chemical Synthesis/Semisynthesis of Post-Translational Modified Tau Protein [J]. Progress in Chemistry, 2022, 34(8): 1645-1660.
[10] Peng Xu, Biao Yu. Challenges in Chemical Synthesis of Glycans and the Possible Problems Relevant to Condensed Matter Chemistry [J]. Progress in Chemistry, 2022, 34(7): 1548-1553.
[11] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[12] Shuaiwei Peng, Zhuofu Tang, Bing Lei, Zhiyuan Feng, Honglei Guo, Guozhe Meng. Design and Application of Bionic Surface for Directional Liquid Transportation [J]. Progress in Chemistry, 2022, 34(6): 1321-1336.
[13] Fangyuan Li, Junhao Li, Yujie Wu, Kaixiang Shi, Quanbing Liu, Hongjie Peng. Design and Preparation of Electrode Nanomaterials with “Yolk-Shell”Structure for Lithium/Sodium-Ion/Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2022, 34(6): 1369-1383.
[14] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[15] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.