中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (1): 58-66 DOI: 10.7536/PC150617 Previous Articles   Next Articles

• Review and comments •

Cleavable Linkers in DNA Sequencing by Synthesis

Jiang Yu1, Tan Lianjiang2, Yin Yan1, Shen Yu-Mei2*, Gong Bing4, Shao Zhifeng3   

  1. 1. School of Chemistry and Environmental Engineering, Shanghai Institution of Technology, Shanghai 201418, China;
    2. Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China;
    3. Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
    4. Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260, United States
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 11374207, 31370750, 81071250, 91227109).
PDF ( 1721 ) Cited
Export

EndNote

Ris

BibTeX

DNA sequencing technology is the basis of genetical genomics-related diseases. Sequencing by synthesis is one of the most important second-generation DNA sequencing techniques. Sequencing by synthesis can achieve a massively parallel sequencing effectively and improve sequencing throughput greatly, which favor cost reduction. Therefore, sequencing by synthesis has been widely used over the world. In DNA sequencing by synthesis, fluorescence-labeled nucleotides should be synthesized as a cyclic reversible terminator for DNA extension reaction. The reversible terminators reported in the literature mainly include MRT (mono-modified reversible terminators) and DRT (dual-modified reversible terminators) reversible terminators. The most significant advantage of DRT reversible terminator is that it can be readily identified by DNA polymerase. Besides, the synthetic route of MRT is simple, and this type of reversible terminator is hence more suitable for DNA sequencing by synthesis. Since fluorescence-labeled nucleotides are usually prepared by connecting the fluorescence tag and the nucleotide with a cleavable linker, the properties of the cleavable linker exert significant effects on the key parameters of DNA sequencing such as sequencing efficiency and read length. In this paper, recent advances and current research status of cleavable linkers used in DNA sequencing by synthesis is reviewed. Also, the development prospect of the cleavable linkers is demonstrated.

Contents
1 Introduction
2 Introduction of DNA sequencing technology
3 DNA sequencing by synthesis
3.1 Mono-modified cyclic reversible terminators
3.2 Dual-modified cyclic reversible terminators
4 Linkers
4.1 Enzymatic reversible terminators
4.2 Nucleophilic/alkali sensitive reversible terminators
4.3 Reduction-sensitive reversible terminators
4.4 Photosensitive reversible terminators
4.5 Metal-aided reversible terminators
4.6 Oxidation-sensitive reversible terminators
4.7 Electrophilic/acid-sensitive reversible terminators
5 Outlook

CLC Number: 

[1] Avery O T, MacLeod C M, McCarty M. J. Exp. Med., 1944, 79: 137.
[2] Meselson M, Stahl F W. Proc. Natl. Acad. Sci.U.S.A., 1958, 44: 671.
[3] Sanger F, Coulson A R. J. Mol. Biol., 1957, 94: 441.
[4] Sanger F, Nicklen S, Coulson A R. Proc. Natl. Acad. Sci.U.S.A.,1977, 74: 5463.
[5] Maxam A M, Gilbert W. Proc. Natl. Acad. Sci.U.S.A., 1977, 74: 560.
[6] Gao L, Lu Z H. Biochem. Biophys. Res. Commun., 2009, 387: 421.
[7] Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B, Bibillo A, Bjornson K, Chaudhuri B, Christians F, Cicero R, Clark S, Dalal R, DeWinter A, Dixon J, Foquet M, Gaertner A, Hardenbol P, Heiner C, Hester K, Holden D, Kearns G, Kong X X, Kuse R, Lacroix Y, Lin S, Lundquist P, Ma C, Marks P, Maxham M, Murphy D, Park I, Pham T, Phillips M, Roy J, Sebra R, Shen G, Sorenson J, Tomaney A, Travers K, Trulson M, Vieceli J, Wegener J, Wu D, Yang A, Zaccarin D, Zhao P, Zhong F, Korlach J, Turner S. Science, 2009, 323: 133.
[8] Levene M J, Korlach J, Turner S W, Foquet M, Craighead H G, Webb W W. Science, 2003, 299: 682.
[9] Schadt E E, Turner S, Kasarskis A. Hum. Mol. Genet., 2010, 19: 227.
[10] Hyman E D. Anal. Biochem., 1988, 174: 423.
[11] Ronaghi M. Anal. Biochem. 1996, 242: 84.
[12] Guo J, Yu L, Nicholas T, Ju J Y. Acc. Chem. Res., 2010, 43: 551.
[13] Metzker M L. Genome Res., 2005, 15: 1767.
[14] Melamede R J. US 4863849, 1989.
[15] Kim T S, Kim D R, Ahn H C, Shin D Y, Ahn D R. ChemBioChem., 2010, 11: 75.
[16] Metzker M L, Raghavachari R. Nucleic. Acid. Res., 1994, 22: 4259.
[17] Welch B M, Burgess K. Nucleoside Nucleotides., 1999, 18: 197.
[18] Welch B M, Martinez C I, Zhang A J, Jin S, Gibbs S R, Burgess K. Chemistry, 1999, 5: 951.
[19] Shin D Y, Ahn D R, Chui H. EP 2305835A1, 2011.
[20] Ruparel H R, Bi L R, Li Z G, Bai X P, Kim D H, Nicholas J T, Ju J Y. Proc. Natl. Acad. Sci., 2005, 102(17): 5932.
[21] Guo J, Xu N, Li Z M, Zhang S L, Wu J, Kim D H, Marma M S, Meng Q L, Cao H Y, Li X X, Shi S D, Yu L, Kalachikov S, Russo J J, Nicholas J T, Ju J Y. Proc. Natl. Acad. Sci.U.S.A., 2008, 105(27): 9145.
[22] Kricka L J, Fortina P. Clin. Chem., 2009, 55(4): 670.
[23] Turcatti G, Romieu A, Fedurco M, Tairi A P. Nucleic. Acids Res., 2008, 36(4): e25.
[24] Tasara T, Angerer B, Damond M, Winter H, Doerhoefer S, Huebscher U, Amacker M. Nucleic. Acids. Res., 2003, 31: 2636.
[25] Seok T S, Bai X P, Ruparel H, Li Z M, Nicholas J T, Ju J Y. Proc. Natl. Acad. Sci.U. S. A., 2004, 101(15): 5488.
[26] Seok T S, Bai X P, Kim D H, Meng Q L, Shi S D, Ruparel H, Li Z M, Nicholas J T, Ju J Y. Proc. Natl. Acad. Sci.U. S. A., 2005, 102(17): 5926.
[27] Li Z M, Bai X P, Ruparel H, Kim S, Nicholas J T, Ju J Y. Proc. Natl. Acad. Sci.U. S. A., 2003, 100(2): 414.
[28] Vladislav A L, Wu W D, Stupi1 B P, Wang J C, Sidney E, Megan M, Hersh1 N, Michael L. Nucl. Acids. Res., 2011, 39(6): e39.
[29] Leriche G, Chisholm L, Wagner A. Bioorg. Med. Chem., 2012, 20: 571.
[30] Babe L M, Craik C S. Cell, 1997, 91: 427.
[31] Speers A E, Cravatt B F. J. Am. Chem. Soc., 2005, 127: 10018.
[32] Takakusa H, Kikuchi K, Urano Y, Sakamoto S, Yamaguchi K, Nagano T. J. Am. Chem. Soc., 2002, 124: 1653.
[33] Lin W C, Morton T H. J. Org. Chem., 1991, 56: 6850.
[34] Fang S Y, Bergstrom D E. Nucleic Acid Res., 2003, 31: 708.
[35] Knapp D C, D'Onofrio J, Engels J W. Bioconjugate Chem., 2010, 21: 1043.
[36] Zarling D A, Watson A, Bach F H. J. Immunol., 1980, 124: 913.
[37] Petrotchenko E V, Olkhovik V K, Borchers C H. Mol. Cell. Proteomics., 2005, 4: 1167.
[38] Yokoshima S, Abe Y, Watanabe N, Kita Y, Kan T, Iwatsubo T, Tomita T, Fukuyama T. Bioorg. Med. Chem. Lett., 2009, 19: 6869.
[39] Long L L, Lin W Y, Chen B B, Gao W S, Yuan L. Chem. Commun., 2011, 47: 893.
[40] Traut R R, Bollen A, Sun T T, Hershey J W, Sundberg J, Pierce L R. Biochemistry., 1973, 12: 3266.
[41] Bildstein L, Dubernet C, Couvreur P. Adv. Drug Delivery Rev., 2011, 63: 3.
[42] Texier I, Razkin J, Josserand V, Boturyn D, Dumy P, Coll J, Rizo P. Nucl. Instrum. Methods Phys. Res. Sect. A, 2007, 571: 165.
[43] Soukup G A, Cerny R L, Maher L J. Bioconjugate Chem., 1995, 6: 135.
[44] Turcatti G, Komieu A, Fedurco M, Tairi A.Nucleic Acids Res., 2008, 36: e25.
[45] 汤道年(Tang D N). 华东理工大学硕士论文(Doctoral Dissertation of East China University of Science and Technology), 2014.
[46] 汤道年(Tang D N),江敏(Jiang M),李小卫(Li X W),康亚妮(Kang Y N),伍新燕(Wu X Y),龚兵(Gong B),邵志峰(Shao Z F),赵小东(Zhao X D),沈玉梅(Shen Y M). 高等学校化学学报(Chemical Journal of Chinese Universities), 2014, 35: 2346.
[47] Gemeay A H. Dyes Pigments., 2002, 54: 201.
[48] Landi F, Johansson C M, Campopiano D J, Hulme A N. Org. Biomol. Chem., 2010, 8: 56.
[49] Yang Y Y, Grammel M, Raghavan A S, Charron G, Hang H C. Chem. Biol., 2010, 17: 1212.
[50] Budin G, Moune-Dimala M, Leriche G, Saliou J M, Papillon J, Sanglier-Cianferani S, Dorsselaer A V, Lamour V, Brino L, Wagner A. ChemBioChem., 2010, 11: 2359.
[51] Tan L J, Liu Y Z, Yang Q L, Li X W, Wu X Y, Gong B, Shen Y M, Shao Z F. Chem. Commun., 2016, 52: 954.
[52] 沈玉梅(Shen Y M),杨晴来(Yang Q L),谭连江(Tan L J),李鑫辉(Li X H),邵志峰(Shao Z F),龚兵(Gong B),李小卫(Li X W),刘亚智(Liu Y Z),张震(Zhang Z). CN 201510031230.9. 2015.
[53] Hammond N, Koumi P, Langley G J, Lowe A, Brown T. Org. Biomol. Chem., 2007, 5: 1878.
[54] Zhou H L, Ranish J A, Watts J D, Aebersold R. Nat. Biotechnol., 2002, 20: 512.
[55] Holmes P C. J. Org. Chem., 1997, 62: 2370.
[56] Chowdhury S M, Munske G R, Tang X T, Bruce J E. Anal. Chem., 2006, 78: 8183.
[57] Cho S, Lee S H, Chung W J, Kim Y K, Lee Y S, Kim B G. Electrophoresis., 2004, 25: 3730.
[58] Lemaire R, Stauber J, Wisztorski M, Camp C V, Desmons A, Deschamps M, Proess G, Rudlof I, Woods A S, Day R, Salzet M, Fournier I. J. Proteome Res., 2007, 6: 2057.
[59] Li Z M, Bai X P, Ruparel H, Kim S, Turro N J, Ju J Y. Proc. Natl. Acad. Sci.U. S. A., 2003, 100: 414.
[60] Seo T S, Bai X P, Ruparel H, Li Z M, Turro N J, Ju J Y. Proc. Natl. Acad. Sci.U. S. A., 2004, 101: 5488.
[61] Seo T S, Bai X P, Kim D H, Meng Q L, Shi S D, Ruparel H, Li Z M, Turro N J, Ju J Y. Proc. Natl. Acad. Sci.U.S.A., 2005, 102: 5926.
[62] Meng Q L, Kim D H, Bai X P, Bi L R, Turro N J, Ju J Y. US20090081686A1, 2008
[63] Wu W, Stupi B P, Litosh A V, Mansouri D, Farley D, Morris S, Metzker S, Metzker L M. Nucleic Acids Res., 2007, 35: 6339.
[64] Wu W, Litosh A V, Stupi B P, Metzker L M. US20090081686A1, 2008
[65] Tjoeng F S, Heavner G A. J. Org. Chem., 1983, 48: 355.
[66] Orth R, Sieber S A. J. Org. Chem., 2009, 74: 8476.
[67] Gardner M W, Vasicek L A, Shabbir S, Anslyn E V, Brodbelt J S. Anal. Chem., 2008, 80: 4807.
[68] Gardner M W, Brodbelt J S. Anal. Chem., 2009, 81: 4864.
[69] Petrotchenko E V, Xiao K H, Cable J, Chen Y W, Dokholyan N V, Borchers C H. Mol. Cell. Proteomics., 2009, 8: 273.
[70] Kodama K, Fukuzawa S, Nakayama H, Kigawa T, Sakamoto K, Yabuki T, Matsuda N, Shirouzu M, Takio K, Tachibana K, Yokoyama S. ChemBioChem., 2006, 7: 134.
[71] Bi L R, Kim D H, Ju J Y. J. Am. Chem. Soc., 2006, 128: 2542.
[72] Smith R J, Capaldi R A, Muchmore D, Dahlquist F. Biochemistry, 1978, 17: 3719.
[73] Brockmöller J, Kamp R M. Biochemistry, 1988, 27: 3372.
[74] Hutter D, Kim M J, Karalkar N, Leal N A, Chen F, Guggenheim E, Visalakshi V, Olejnik J, Gordon S, Benner S A. Nucleosides Nucleotides Nucleic Acids., 2010, 29: 879.
[75] Buchardt O, Elsner H I, Nielsen P E, Petersen L C, Suenson E. Anal. Chem., 1986, 158: 87.
[76] Saxon E, Bertozzi C R. Science, 2000, 287: 2007.
[77] Hangauer M J, Bertozzi C R. Angew. Chem. Int. Ed., 2008, 47: 2394.
[78] Tan L J, Liu Y Z, Li X W, Wu X Y, Gong B, Shen Y M, Shao Z F. Chem. Commun., 2016, DOI: 10.10391C5CC09578F.
[79] Szychowski J, Mahdavi A, Hodas L J, Bagert J D, Ngo J T, Landgraf P, Dieterich D C, Schuman E M, Tirrell D A. J. Am. Chem. Soc., 2010, 132: 18351.
[80] Tannock I F, Rotin D. Cancer Res., 1989, 49: 4373.
[81] Gao W W, Chan J M, Farokhzad O C. Mol. Pharmaceutics, 2010, 7: 1913.
[82] Jiang M, Tang D M, Zhao X D, Li Q, Zhuang Y, Wei X F, Li X W, Liu Y Z, Wu X Y, Shao Z F, Gong B, Shen Y M. Nucleosides Nucleotides Nucleic Acids, 2014, 33: 774.
[83] 沈玉梅(Shen Y M),龚兵(Gong B),黎庆(Li Q), 邵志峰(Shao Z F), 伍新燕(Wu X Y), 盛司潼(Sheng S T), 郭勋祥(Guo X X). CN 201110331659.1. 2014.
[84] 沈玉梅(Shen Y M),庄园(Zhang Y),郭勋祥(Guo X X),伍新燕(Wu X Y),邵志峰(Shao Z F),龚兵(Gong B),黎庆(Li Q). CN 201210132695. X. 2012.
[85] 沈玉梅(Shen Y M),赵小东(Zhao X D),邵志峰(Shao Z F),龚兵(Gong B),汤道年(Tang D N),李小卫(Li X W),彭丽娜(Peng L N),邢宇洋(Xing Y Y),庄园(Zhang Y),黎庆(Li Q),伍新燕(Wu X Y). CN 201310015235.3. 2013.
[86] 沈玉梅(Shen Y M),龚兵(Gong B),汤道年(Tang D N),邵志峰(Shao Z F),赵小东(Zhao X D),李小卫(Li X W),伍新燕(Wu X Y),黎庆(Li Q)、魏晓飞(Wei X F),刘亚智(Liu Y Z). CN 201310533070.9. 2013.
[1] Juan Ren, Shen Bian, Yiyun Wang, Xianglei Kong. Magic-Number Cluster of Serine Octamer: Structure and Chiral Characteristics [J]. Progress in Chemistry, 2018, 30(4): 383-397.
[2] Xiao Xiao, Changsheng Chen, Weiqiang Liu, Yeshun Zhang. Structure, Features and Biomedical Applications of Silk Sericin [J]. Progress in Chemistry, 2017, 29(5): 513-523.
[3] Zhao Yanan, Wang Mengfan, Qi Wei, Su Rongxin, He Zhimin. Supramolecular Artificial Enzyme Based on Assembling Peptide Gel [J]. Progress in Chemistry, 2016, 28(11): 1664-1671.
[4] Jiang Ge, Luo Feng, Xu Yaozhong, Zhang Xiaohui. UVA Assisted 4-Thiothymidine for Cancer Treatment [J]. Progress in Chemistry, 2016, 28(8): 1224-1237.
[5] Yuan Shuo, Sun Dequn. The Conformational Restriction of β-Peptidomimetics in Drug Design [J]. Progress in Chemistry, 2016, 28(7): 1084-1098.
[6] Song Ping, Ye Dekai, Song Shiping, Wang Lihua, Zuo Xiaolei. Preparation and Biological Applications of DNA Hydrogel [J]. Progress in Chemistry, 2016, 28(5): 628-636.
[7] Ma Xiaochuan, Fei Hao. The Use of Metal Coordination in Peptide and Protein Research [J]. Progress in Chemistry, 2016, 28(2/3): 184-192.
[8] Ding Peng, Chen Xian, Li Xiuling, Qing Guangyan, Sun Taolei, Liang Xinmiao. The Separation and Enrichment of Glycoproteins or Glycopeptides Based on Nanoparticles [J]. Progress in Chemistry, 2015, 27(11): 1628-1639.
[9] Wang Jun, Zhang Afang. Peptide-Mediated Supramolecular Helical Polymers [J]. Progress in Chemistry, 2015, 27(10): 1413-1424.
[10] Hou hui, Sun Dequn. Conformational Restriction of Peptidomimetics in Drug Design [J]. Progress in Chemistry, 2015, 27(9): 1260-1274.
[11] Dong Shibiao, Jiao Xiong, Zhao Rongtao, Xu Jinkun, Song Hongbin, Hao Rongzhang. The DNA Tetrahedron Nanostructure Materials and Their Applications [J]. Progress in Chemistry, 2015, 27(9): 1191-1197.
[12] Zhao Yuan, Zeng Jin, Lin Yingwu. Rational Design of Artificial Hydrolases in Protein Scaffolds [J]. Progress in Chemistry, 2015, 27(8): 1102-1109.
[13] Wang Jianwei, Song Lifeng, Zhao Jin, Yuan Xubo. Polymer Hydrogels Based on Peptide Structure [J]. Progress in Chemistry, 2015, 27(4): 373-384.
[14] Tian Danbi, Zhang Wei, Tang Yan, Jiang Ling, Liu Jia, Hu Yi. Bioconjugate Probe for Enzyme Activity Based on the Gold Nanoparticles [J]. Progress in Chemistry, 2015, 27(2/3): 267-274.
[15] Liang Yanyu, Tang Shan, Zheng Jishen. Cell-Permeable Cyclic Peptides [J]. Progress in Chemistry, 2014, 26(11): 1793-1800.