中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (1): 75-82 DOI: 10.7536/PC150615 Previous Articles   Next Articles

• Review and comments •

Fabricating Polymer Microspheres through CaCO3 Templates

Wang Rongmin*, Lv Siyao, Li Tao, He Yufeng, Song Pengfei   

  1. Key Laboratory Eco-Environment-Related Polymer Materials of Ministry of Education, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21263024, 21364012).
PDF ( 1126 ) Cited
Export

EndNote

Ris

BibTeX

Templating technique is an effective and efficient method to fabricate polymer microspheres with controllable size and same morphology. As one of polymorphs of CaCO3, vaterite is the ideal template particle for fabricating microspheres because of many advantages such as their biocompatibility, monodispersed pore size and mild decomposition conditions. In this review, based on introducing the CaCO3 templates briefly, a recent progress in utilizing the CaCO3 templates for fabricating microspheres is also addressed according to the selection of raw materials and the applications. Three main routes to load the CaCO3 cores have been used, such as physisorption, infiltration and co-precipitation. The raw materials can be divided into natural polymer (such as polysaccharide, protein and DNA) and synthetic polymer (such as polystyrene sulfonate, polyvinyl alcohol). The structures of microspheres fabricated by CaCO3 templates are porous and hollow, and size controlling with uniform morphology. All the particles can be used in various areas included pharmaceutical, drug delivery, biosensors and chemical analysis. In the future, the researches of CaCO3 templating technique will be greatly promoted by the development of nanotechnology and the requirement of biomedical field to prepare the new kinds of microspheres with extensive applications.

Contents
1 Introduction
2 The introduction of CaCO3 templates
3 Natural polymer microspheres
3.1 Chitosan microcapsules and alginate microcapsules
3.2 Protein and polyaminoacid porous microspheres
3.3 DNA microcapsules
4 Synthetic polymer microspheres
4.1 The polymer microspheres containing polystyrene
4.2 Polyethylene glycol porous microspheres
5 Conclusion

CLC Number: 

[1] Xiong Y, Liu J, Wang Y, Wang H, Wang R M. Angew. Chem. Int. Ed., 2012, 51: 9114.
[2] Li C, Wu Z, He Y, Song P, Zhai W, Wang R M. J. Colloid Interf. Sci., 2014, 426: 39.
[3] De La Vega J C, Elischer P, Schneider T, Häfeli U O. Nanomedicine, 2013, 8(2): 265.
[4] Tan C J, Chua H G, Ker K H, Tong Y W. Anal. Chem., 2008, 80(3): 683.
[5] 毕殿洲(Bi D Z). 药剂学(Pharmacy). 北京:人民卫生出版社(Beijing: People's Medical Publishing House), 2002.461.
[6] 裴菲(Pei F). 西北师范大学硕士论文(Master Dissertation of Northwest Normal University), 2013.
[7] Schmidt S, Behra M, Uhlig K, Madaboosi N, Hartmann L, Duschl C, Volodkin D. Adv. Funct. Mater., 2013, 23(1): 116.
[8] Schmidt S, Volodkin D. J. Mater. Chem. B, 2013, 1(9): 1210.
[9] Zhao Y, Luo Z, Li M, Qu Q, Ma X, Yu S H, Zhao Y. Angew. Chem. Int. Ed., 2015, 54(3): 919.
[10] Zhao Y, Lu Y, Hu Y, Li J P, Dong L, Lin L N, Yu S H. Small, 2010, 6(21): 2436.
[11] Biradar S, Ravichandran P, Gopikrishnan R, Goornavar V, Hall J C, Ramesh V, Baluchamy S, Jeffers R B, Ramesh G T. J. Nanosci. Nanotechno., 2011, 11(8): 6868.
[12] Trushina D B, Bukreeva T V, Kovalchuk M V, Antipina M N. Mater. Sci. Eng. C, 2014, 45: 644.
[13] He Q, Cui Y, Li J. Chem. Soc. Rev., 2009, 38(8): 2292.
[14] He Q, Cui Y, Ai S, Tian Y, Li J B. Curr. Opin. Colloid In., 2009, 14(2): 115.
[15] Wu Y, Cheng C, Yao J, Chen X, Shao Z. Langmuir, 2011, 27(6): 2804.
[16] Trushina D B, Bukreeva T V, Kovalchuk M V, Antipina M N. Mat. Sci. Eng. C, 2014, 45: 644.
[17] Bre D?evi D? L, Kralj D. Croat. Chem. Acta, 2007, 80(3/4): 467.
[18] Volodkin D V, Larionova N I, Sukhorukov G B. Biomacromolecules, 2004, 5(5): 1962.
[19] Vogel R, Persson M, Feng C, Parkin SJ, Nieminen TA, Wood B, Heckenberg N R, Rubinsztein-Dunlop H. Langmuir, 2009, 25(19): 11672.
[20] Yashchenok A M, Delcea M, Videnova K, Jares-Erijman E A, Jovin T M, Konrad M, Möhwald H, Skirtach A G. Angew. Chem. Int. Ed., 2010, 49(44): 8116.
[21] Volodkin D V, Petrov A I, Prevot M, Sukhorukov G B. Langmuir, 2004, 20(8): 3398.
[22] Trushina D B, Bukreeva T V, Kovalchuk M V, Antipina M N. Mat. Sci. Eng. C, 2014, 45: 644.
[23] Volodkin D V, Petrov A I, Prevot M, Sukhorukov G B. Langmuir, 2004, 20(8): 3398.
[24] Sukhorukov G B, Volodkin D V, Günther A M, Sukhorukov G B. J. Mater. Chem., 2004, 14(14): 2073.
[25] De Temmerman M L, Demeester J, De Vos F, De Smedt S C. Biomacromolecules, 2011, 12(4): 1283.
[26] Volodkin D. Adv. Colloid Interfac., 2014, 4(206): 437.
[27] Yin X, Li F, He Y, Wang Y, Wang R M. Biomaterials Science, 2013, 1(5): 528.
[28] Leader B, Baca Q J, Golan D E. Nat. Rev. Drug Discov., 2008, 7(1): 21.
[29] Han Y, Tong W, Zhang Y, Gao C. Macromol. Rapid Comm., 2012, 33(4): 326.
[30] Liu L, Wu F, Ju X J, Xie R, Wang W, Niu C H, Chu L Y. J. Colloid Interf. Sci., 2013, 404: 85.
[31] Roberts J R, Ritter D W, McShane M J. J. Mater. Chem. B, 2013, 1(25): 3195.
[32] Zhu M L, Li Y L, Zhang Z M, Jiang Y. RSC Adv., 2015, 5(42): 33262.
[33] Schmidt S, Behra M, Uhlig K, Madaboosi N, Hartmann L, Duschl C, Volodkin D. Adv. Funct. Mater., 2013, 23(1): 116.
[34] Best J P, Yan Y, Caruso F. Adv. Healthc. Mater., 2012, 1(1): 1.
[35] Merkel T J, Jones S W, Herlihy K P, Kersey F R, Shields A R, Napier M, Lufta J C, Wu H, Zamboni W C, Wang A Z, Bear J E, DeSimone J M. Proc. Natl. Acad. Sci. U. S. A., 2011, 108(2): 586.
[36] Mak W C, Georgieva R, Renneberg R, Baumler H. Adv. Funct. Mater., 2010, 20(23): 4139.
[37] Wang A, Cui Y, Li J, van Hest J C M. Adv. Funct. Mater., 2012, 22(13): 2673.
[38] Khafagy E S, Morishita M, Onuki Y, Takayama K. Adv. Drug Deliver Rev., 2007, 59(15): 1521.
[39] Klingler C, Müller B W, Steckel H. Int. J. Pharmaceut., 2009, 377(1): 173.
[40] Shi L, Plumley C J, Berkland C. Langmuir, 2007, 23(22): 10897.
[41] Volodkin D V, von Klitzing R, Möhwald H. Angew. Chem. Int. Ed., 2010, 122(48): 9444.
[42] Volodkin D V, Schmidt S, Fernandes P, Larionova NI, Sukhorukov GB, Duschl C, Möhwald H, von Klitzing R. Adv. Funct. Mater., 2012, 22(9): 1914.
[43] Roessl U, Nahálka J, Nidetzky B. Biotechnol. Lett., 2010, 32(3): 341.
[44] Yan X, Li J, Möhwald H. Adv. Mater., 2012, 24(20): 2663.
[45] Möhwald H. Colloid Polym. Sci., 2010, 288(2): 123.
[46] Borodina T, Markvicheva E, Kunizhev S, Möhwald H, Sukhorukov G B, Kreft O. Macromol. Rapid Comm., 2007, 28(18/19): 1894.
[47] Kong J, Lu Z, Lvov Y M, Desamero R Z B, Frank H A, Rusling J F. J. Am. Chem. Soc., 1998, 120(29): 7371.
[48] Fujii A, Maruyama T, Ohmukai Y, Kamio E, Sotani T, Matsuyama H. Colloids Surf. A Physicochem. Eng. Asp., 2010, 356(1): 126.
[49] Wang Z, Qian L, Wang X, Zhu H, Yang F, Yang F. Colloids Surf. A: Physicochem. Eng. Asp., 2009, 332(2): 164.
[50] Zhao Q, Li B. Nanomed.: Nanotechnol., 2008, 4(4): 302.
[51] Luo G F, Xu X D, Zhang J, Yang J, Gong Y H, Lei Q, Jia H Z, Li C, Zhuo R X, Zhang X Z. ACS Appl. Mater. Inter., 2012, 4(10): 5317.
[52] Angelatos A S, Radt B, Caruso F. J. Phys. Chem. B, 2005, 109(7): 3071.
[53] Wu Q, Chen Z C, Lu D S, Lin X F. Macromol. Biosci., 2006, 6(1): 78.
[54] Volodkin D V, Petrov A I, Prevot M, Sukhorukov G B. Langmuir, 2004, 20(8): 3398.
[55] Petrov A I, Volodkin D V, Sukhorukov G B. Biotechnol. Progr., 2005, 21(3): 918.
[56] Xu L. Polym. Bull., 2013, 70(2): 455.
[57] 金谊(Jin Y), 朱以华(Zhu Y H), 刘望才(Liu W C), 王家荣(Wang J R), 房江华(Pang J H). 过程工程学报(The Chinese Journal of Process Engineering), 2009, 9(4): 776.
[58] Li F, Tang C, Liu S, Ma G. Electrochimica Acta, 2010, 55(3): 838.
[59] Anandhakumar S, Nagaraja V, Raichur A M. Colloid Surface B, 2010, 78(2): 266.
[60] Tong W, She S, Xie L, Gao C. Soft Matter, 2011, 7(18): 8258.
[61] Zhao Q H, Zhang S A, Tong W J, Gao C Y, Shen J C. Eur. Polym. J., 2006, 42(12): 3341.
[62] Shi J, Yang C, Zhang S, Wang X, Jiang Z, Zhang W, Song X, Ai Q, Tian C. ACS Appl. Mater. Inter., 2013, 5(20): 9991.
[63] Behra M, Schmidt S, Hartmann J, Volodkin D V, Hartmann L. Macromol. Rapid Comm., 2012, 33(12): 1049.
[64] Pussak D, Behra M, Schmidt S, Hartmann L. Soft Matter, 2012, 8(5): 1664.
[65] Behra M, Azzouz N, Schmidt S, Volodkin D V, Mosca S, Chanana M, Seeberger P H, Hartmann L. Biomacromolecules, 2013, 14(6): 1927.
[66] Cui J, van Koeverden M P, Müllner M, Kempe K, Caruso F. Adv. Colloid Interface, 2014, 207: 14.
[67] Parakhonskiy B V, Yashchenok A M, Konrad M, Skirtach A G. Adv. Colloid Interface, 2014, 207: 253.
[68] Gokmen M T, Du Prez F E. Prog. Polym. Sci., 2012, 37(3): 365.
[69] Kowalczuk A, Trzcinska R, Trzebicka B, Müller A H E, Dworak A, Tsvetanov C B. Prog. Polym. Sci., 2014, 39(1): 43.
[1] Meng Mu, Xuewen Ning, Xinjie Luo, Yujun Feng. Fabrications, Properties, and Applications of Stimuli-Responsive Polymer Microspheres [J]. Progress in Chemistry, 2020, 32(7): 882-894.
[2] Xiangming Na, Weiqing Zhou, Juan Li, Zhiguo Su, Guanghui Ma. Preparation and Application of Porous Polymer Microspheres in Virus-Like Particles Purification [J]. Progress in Chemistry, 2018, 30(1): 5-13.
[3] Rui Zhang, Xuan Liu, Hongbing Ji*. Nano-Microcapsule Intermediate of Natural Flavor [J]. Progress in Chemistry, 2018, 30(1): 29-43.
[4] Wenzhong Zhai, Yufeng He, Bin Wang, Yubing Xiong, Pengfei Song, Rongmin Wang. Fabrication and Applications of Polymeric Janus Particles [J]. Progress in Chemistry, 2017, 29(1): 127-136.
[5] Wang Rongmin, Sun Kangqi, Wang Jianfeng, He Yufeng, Song Pengfei, Xiong Yubing. Preparation and Application of Natural Polymer/Hydroxyapatite Composite [J]. Progress in Chemistry, 2016, 28(6): 885-895.
[6] Mao Zhengwei, Zhang Yuanhong, Li Huiying, Tong Weijun, Gao Changyou*. Advanced Particulate Biomedical Materials and Their Interactions with Cells [J]. Progress in Chemistry, 2013, 25(07): 1061-1070.
[7] Li Chunge, Zhao Shuang, Li junjie, Yin Yuji*. Polymeric Biomaterials Containing Thiol/Disulfide Bonds [J]. Progress in Chemistry, 2013, 25(01): 122-134.
[8] Zhao Shuang, Zhao Yanyan, Meng Hengxing, Li Qian, Yin Yuji. Carrier Materials of Mesenchymal Stem Cells Expansion [J]. Progress in Chemistry, 2012, 24(01): 173-181.
[9] Qi Hengzhi, Zhao Yunhui, Zhu Kongying, Yuan Xiaoyan. Research Progresses in Self-Healing Polymer Materials [J]. Progress in Chemistry, 2011, 23(12): 2560-2567.
[10] Wang Haiping, Rong Minzhi, Zhang Mingqiu. Self-Healing Polymers and Polymer-Based Composites Containing Microcapsules [J]. Progress in Chemistry, 2010, 22(12): 2397-2407.
[11] . Microcapsules from the Self-Assembly of Nanoparticles at Interfaces [J]. Progress in Chemistry, 2010, 22(09): 1735-1740.
[12] . Preparation and Application of Core-shell Magnetic Molecularly Imprinted Polymer Microspheres [J]. Progress in Chemistry, 2010, 22(09): 1819-1825.
[13]

Liu Hongxia|Wang Chaoyang**|Gao Quanxing|Tong Zhen

. Preparation of Novel Microcapsules by Emulsion Droplet Template Method [J]. Progress in Chemistry, 2008, 20(0708): 1044-1049.
[14] Han Limin|Suo Quanling** |Hong Hailong. Applications of Polymer Microsphere in Electrochemistry [J]. Progress in Chemistry, 2008, 20(06): 931-935.
[15] Liu Xiudong1,2|Yu Weiting1|Wang Wei1|Xiong Ying1|Ma Xiaojun1** |Yuan Quan1. Polyelectrolyte Microcapsules Prepared by Alginate and Chitosan for Biomedical Application [J]. Progress in Chemistry, 2008, 20(01): 126-139.