中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (4): 589-606 DOI: 10.7536/PC150601 Previous Articles   

• Review and comments •

Mechanism and Influence Factors of Valve-Metal Oxide Nanotube Arrays Prepared by Anodization Process

Li Licheng1, Fang Dong1*, Li Guangzhong2, Liu Ruina1, Liu Suqin3, Xu Weilin1   

  1. 1. College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China;
    2. State Key Laboratory of Porous Metal Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an 710016, China;
    3. College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the Educational Commission of Hubei Province of China(No. 144004).
PDF ( 966 ) Cited
Export

EndNote

Ris

BibTeX

The electrochemical anodization method is a simple and versatile process for fabricating well aligned valve-metal oxide nanotube arrays, and the morphology of the nanotube arrays can also be controlled via adjusting the parameters during electrochemical anodization process. Due to their chemical/physical functionality, nanotubes fabricated via electrochemical anodization method have been applied in various fields. The basic formation process of oxide nanotube arrays and three classical models for porous anodic oxide formation are reviewed here. Through the Al, Ti, Zr, which are typical valve-metals, the aim is to illustrate their key processes responsible for the formation of porous anodic oxide film and their general anodic oxidation preparation process. The fabrication methods of other valve-metals even their alloys are reviewed in this paper as well. Furthermore, in combination with the results of the research on Al, Ti, Zr, anodic voltage, electrolyte type, electrolyte concentration, reaction time and so on, which could affect the morphology of the final products, are presented and discussed in detail. The present views may be helpful to adjust the anodization conditions to fabricate well aligned valve-metal oxide nanotube arrays for their extensive applications.

Contents
1 Introduction
2 The basic principle and the common methods of the electrochemical anodization
2.1 The basic principle of the electrochemical anodization
2.2 Preparation of anodic aluminum oxide (AAO)
2.3 Preparation of anodic titanium oxide (ATO)
2.4 Preparation of anodic zirconium oxide (AZO)
3 The essential parameter of electrochemical anodization
3.1 Anodic voltage
3.2 Electrolyte type
3.3 Concentration of the electrolyte
3.4 Reaction time
3.5 Times of anodization
3.6 The metal shape
4 Conclusions

CLC Number: 

[1] Iijima S. Nature, 1991, 354: 56.
[2] Thompson G E, Furneaux R C. Corros. Sci., 1978, 18: 481.
[3] Thompson G E, Wood G C. Nature, 1981, 290: 230.
[4] Chen C C, Chen C L, Lai Y S. Mater. Chem. Phys., 2011, 131: 250.
[5] Miao J Y, Cai Y, Chan Y F, Sheng P, Wang N. J. Phys. Chem. B, 2006, 110: 2080.
[6] Kovtyukhov N I, Martin B R, Mbindyo J K N, Mallouk T E, Cabassi M, Mayer T S. Mater. Sci. Engin. C, 2002, 19: 255.
[7] Zhang Z, Ying J Y, Dresselhaus M S. J. Mater. Res., 1998, 13: 1745.
[8] Johansson A, Torndahl T, Ottosson L M, Boman M, Carlsson J O. Mater. Sci. Eng. C, 2003, 23: 823.
[9] Sui Y C, Acosta D R, Gonzalez-Leon J A, Bermudez A,Feuchtwanger J,Cui B Z,Flores J O,Saniger J M. J. Phys. Chem. B, 2000, 105: 1523.
[10] Luo Z, Fang Y. J. Comb. Chem., 2008, 10: 611.
[11] Choi M K, Yoon H, Lee K, Shin K. Langmuir, 2011, 27: 2132.
[12] Liu L, Yoo S H, Lee S A, Park S. Nano Lett., 2011, 11: 3979.
[13] Zhao X, Lee U J, Lee K H. J. Phys.Chem. C, 2008, 112: 9539.
[14] Papandrew A B, Atkinson R W, Goenaga G A, Kocha S S, Zack J W. J. Electrochem. Soc., 2013, 160: F848.
[15] Santamaria M, Asaro L, Bocchetta P, Megna B, Quarto F D. ECS Electrochem. Lett., 2013, 2: D29.
[16] Kondo T, Miyazaki H, Nishio K, Masuda H. J. Photochem. Photobiol. A, 2011, 221: 199.
[17] Shukla S, Kim K T, Baev A, Yoon Y K, Litchinitser N M, Prasad P N. ACS Nano, 2010, 4: 2249.
[18] Yanagishita T, Nishio K, Masuda H. Appl. Phys. Express, 2008, 1: 067004.
[19] Yanagishita T, Masui M, Ikegawa N, Masuda H. J. Vac. Sci. Technol. B, 2014, 32: 021809.
[20] Yanagishita T, Nishio K, Masuda H. Appl. Phys. Express, 2009, 2: 022001.
[21] Kondo T, Tanji M, Nishio K, Masuda H. Electrochem. Solid-State Lett., 2006, 9: C189.
[22] Lin Q, Hua B, Leung S, Duan X, Fan Z. ACS Nano, 2013, 7: 2725.
[23] Yanagishita T, Nishio K, Masuda H. J. Vac.Sci. Technol. B, 2010, 28: 398.
[24] Yasui K, Morikawa T, Nishio K, Masuda H. Jpn. J. Appl. Phys., 2005, 44: L469.
[25] Liu D, Zhang C, Wang G, Shao Z, Zhu X, Wang N, Cheng H. J. Phys. D: Appl. Phys., 2014, 47: 085108.
[26] Leonardi S, Bassi A L, Russo V, Fonzo F D, Paschos O, Murray T M, Efstathiadis H, Kunze J. J. Phys. Chem. C, 2012, 116: 384.
[27] Vijh A K. Electrodepos. Sur. Treat., 1973, 2: 461.
[28] Mathieu J B, Mathieu H J, Landolt D. J. Electrochem. Soc., 1978, 125: 1039.
[29] Masuda H, Yotsuya M, Asano M, Nishio K, Nakao M, Yokoo A, Tamamura T. Appl. Phys. Lett., 2001, 78: 826.
[30] Spooner R C. J. Electrochem. Soc., 1955, 102: 156.
[31] Sul Y T, Johansson C B, Jeong Y, Albrektsson T. Med. Eng. Phys., 2001, 23: 329.
[32] Habazaki H, Uozumi M, Konno H, Shimizu K, Nagata S, Asami K, Skeldon P, Thompson G E. Electrochem. Acta, 2002, 47: 3837.
[33] Schlotting F, Schreckenbach J, Dietrich D, Hofmann A, Marx G. Appl. Surf. Sci., 1995, 90: 129.
[34] Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T. Nature, 1997, 388: 431.
[35] Gratzel M. Nature, 2001, 409: 575.
[36] Chen Q, Peng L M. Inter. J. Nanotechnol., 2007, 4: 44.
[37] Liu J, Cao G, Yang Z, Wang D, Dubois D, Zhou X, Graff G L, Pederson L R, Zhang J. Chem. Sus. Chem., 2008, 1: 676.
[38] Ohtsuka T, Otsuki T. J. Electroanal. Chem., 1999, 473: 272.
[39] Fang D, Huang K L, Liu S Q, Luo Z P, Qing X X,Zhang Q G. J. Alloy. Compd., 2010, 498: 37.
[40] Fang D, Huang K L, Liu S Q, Qin D Y. Electrochem. Comm., 2009, 11: 901.
[41] Fang D, Huang K L, Liu S Q, Li Z J. J. Alloy. Compd., 2008, 464: L5.
[42] Fang D, Huang K L, Liu S Q, Huang J H. J. Braz. Chem. Soc., 2008, 19(6): 1059.
[43] Fang D, Huang K L, Luo Z P, Wang Y, Liu S Q, Zhang Q G. J. Mater. Chem., 2011, 21: 4989.
[44] Zhao J L, Wang X X, Xu R Q, Meng F B, Guo L M, Li Y X. Mater. Lett., 2008, 62: 4428.
[45] Shin Y, Lee S. Nanotechnology, 2009, 20: 105301.
[46] Guo L, Zhao J, Wang X, Xu R, Li Y. J. Solid State Electrochem., 2009, 13: 1321.
[47] Cao W, Tan O K, Zhu W, Jiang B, Reddy C V G. Sensor Actuat. B, 2001, 77: 421.
[48] Cho H J, Choi G M. J. Power Sources, 2008, 176: 96.
[49] Tsai P C, Lee J H, Chang C L. Surf. Coat. Technol., 2007, 202: 719.
[50] Fogaing E Y, Huger M, Gault C. J. Eur. Ceram. Soc., 2007, 27: 1843.
[51] Jin G, Lu G, Guo Y, Guo Y, Wang J, Kong W, Liu X. J. Mol. Catal. A: Chem., 2005, 232: 165.
[52] Bao J, Tie C, Xu Z, Ma Q, Hong J, Sang H, Sheng D. Adv. Mater., 2002, 14: 44.
[53] Shin H J, Jeong D K, Lee J G, Sung M M, Kim J Y. Adv. Mater., 2004, 16: 1197.
[54] Tsuchiya H, Macak J M, Ghicov A, Taveira L, Schmuki P. Corros. Sci., 2005, 47: 3324.
[55] Thormann A, Teuscher N, Pfannmcller M, Rothe U, Heilmann A. Small, 2007, 3 (6): 1032.
[56] Matsumotoa F, Nishioa K, Masuda H, Electrochem. Soc. Inc., 2004: 204.
[57] Mor G K, Shankar K, Paulose M K, Varghese O A, Grimes C. Nano Lett., 2006, 6: 215.
[58] Bauer S, Prak J, Faltenbacher S, Berger K P, Schmuki V. Integr. Biol., 2009, 1: 525.
[59] Bavykin D V, Friedrich J M, Walsh F C. Adv. Mater., 2006, 18: 2807.
[60] Su Z X, Zhou W Z. J. Mater. Chem., 2011, 21: 8955.
[61] Poinern G E J, Ali N, Fawcett D. Materials, 2011, 4: 487.
[62] Ghicov A, Schmuki P. Chem. Comm., 2009, 20: 2791.
[63] Pang Y L, Lim S, Ong H C, Chong W T. Appl. Catalysis A: General, 2014, 481: 127.
[64] Zhou X M, Nguyen N T, Ozkan S, Schmuki P. Electrochem. Comm., 2014, 46: 157.
[65] Jarosz M, Pawlik A, Kapusta-Koodziej J, Jaskua M, Sulka G D. Electrochem. Acta, 2014, 136: 412.
[66] Zhuang H F, Lin C J, Lai Y K. Environ. Sci. Technol., 2007, 41: 4735.
[67] Shankar K, Basham J, Allam N K, Varghese O K, Mor G K, Feng X J, Paulose M, Seabold J A, Choi K S, Grimes C A. J. Phys. Chem. C, 2009, 113(16): 6327.
[68] Chen C C, Fang D, Luo Z P. Rev. Nanosci. Nanotechnol., 2012, 1: 229.
[69] 黄奇松(Huang Q S). 铝的阳极氧化和染色(Anodic Qxidation and Staining of Aluminum). 香港:香港万里出版社(Hongkong:Hongkong Wan Li Press), 1985.
[70] Mor G K, Varghese O K, Paulose M, Shankar K, Grimes C A, Sol. Energy Mater. Sol. Cells, 2006, 90: 2011.
[71] Taveira L V, Macak J M, Tsuchiya H, Dick L F P, Schmuki A P, J. Electrochem. Soc., 2005, 152: B405.
[72] Daskf C, Caterry H. Corros. Sci., 1987, 27(1): 83.
[73] Jessensky O, Muller F, Gosele U. Appl. Phys. Lett., 1998, 72(10): 1173.
[74] Xu Y, Thompson G E, Wood G C, Trans. Inst. Met. Finish., 1985, 63: 98.
[75] Chen S H, Chen C C, Luo Z P, Chao C G. Mater. Lett., 2009, 63: 1665.
[76] Say W C, Chen C C. Jpn. J. Ceramic Soc., 2008, 116: 288.
[77] Say W C, Chen C C. Jpn. J. Appl. Phys., 2007, 46: 7577.
[78] Chen C C, Bisrat Y, Luo Z P, Schaak R E, Chao C G, Lagoudas D C. Nanotechnolo., 2006, 17: 367.
[79] Chen C C, Chen J H, Chao C G. Jpn. J. Appl. Phys., 2005, 44: 1529.
[80] Chen C C, Kuo C G, Chen J H, Chao C G. Jpn. J. Appl. Phys., 2004, 43: 8354.
[81] Zwilling V, Aucouturier M, Ceretti E D, Electrochim. Acta, 1999, 45: 921.
[82] Cai Q, Paulose M, Varghese O K, Grimes C A. J. Mater. Res., 2005, 20: 230.
[83] Grimes C A. J. Mater. Chem., 2007, 17: 1451.
[84] Paulose M, Shankar K, Yoriya S, Prakasam H E, Varghese O K, Mor G K, Latempa T A, Fitzgerald A, Grimes C. A. J. Phys. Chem. B, 2006, 110: 16179.
[85] Yetim A F. Surf. Coat. Tech., 2010, 205: 1757.
[86] Lim J H, Choi J. Small, 2007, 3: 1504.
[87] Tao J, Zhao J, Wang X, Kang Y, Li Y. Electrochem. Comm., 2008, 10: 1161.
[88] Kim D, Stein F S, Hahn R, Schmuki P. Electrochem. Comm., 2008, 10: 1082.
[89] Pouporte T, Finne J. J. Appl. Electrochem., 2006, 36: 33.
[90] Khalil N, Leach J S. J. Appl. Electrochem., 1996, 26: 231.
[91] Tsuchiya H, Schmuki P. Electrochem. Comm., 005, 7: 249.
[92] Maeng S, Axe L, Tyson T. J. Electrochem. Soc., 2005, 152: B60.
[93] Tsuchiya H, Macak J M, Sieber I, Taveira L, Ghicov A, Sirotna K, Schmuki P. Electrochem. Comm., 2005, 7: 295.
[94] Yoo J E, Park J Y, Cha G, Choi J. Thin Solid Films, 2013, 531: 583.
[95] Yu L G, Zhang G M, Zhao X Y, Guo D Z. Mater. Res. Bull., 2009, 44: 589.
[96] Jeun J H, Ryu H S, Hong S H. J. Electrochem. Soc., 2009, 156(9): J263.
[97] Albu S P, Ghicov A, Schmuki P. Phys. Status Sol. RRL 3, 2009, 2(3): 64.
[98] Yang Y, Albu S P, Kim D, Schmuki P. Angew. Chem. Int. Ed., 2011, 50: 9071.
[99] Lee C Y, Lee K Y, Schmuki P. Angew. Chem. Int. Ed., 2013, 52: 2077.
[100] Semboshi S, Bando K I, Ohtsu N, Shim Y, Konno T J. Thin Solid Films, 2008, 516: 8613.
[101] Lewandowska M, Pisarek M, Rozniatowski K, Gradzka-Dahlke M, Janik-Czachor M, Kurzydiowski K J. Thin Solid Films, 2007, 515(16): 6460.
[102] Li M F, Zhao G H, Liu M C, Lei Y Z, Jin Y N, Li D M. Electrochem. Comm., 2011, 13: 942.
[103] Simka W. Electrochim. Acta, 2011, 56: 9831.
[104] Ohtsua N, Masahashib N, Mizukoshi Y. Appl. Surf. Sci., 2012, 258: 6052.
[105] Oliveira N T C, Guastaldi A C. Corros. Sci., 2008, 50: 938.
[106] Paez M A, Skeldon R, Thompson G E, Saez M, Bustos O, Monsalve A. Rev. Metal. MadridVol. Extr., 2003, 243: 243.
[107] Kikuchi T, Haraa Y, Sakairi M, Yonezawa T, Yamauchi A,Takahashi H. Corros. Sci., 2010, 52: 2525.
[108] Regone N N, Freire C M A, Ballester M. J. Mater. Pro. Tech., 2006, 72: 146.
[109] Nagai A, Suzuki Y, Tsutsμmi Y, Nozaki K, Wada N, Katayama K, Hanawa T, Yamashita K. Mater. Res. Part B, 2014, 102: 659.
[110] Moon S M, Nam Yunk Y. Corros. Sci., 2012, 65: 494.
[111] Keller F, Hunter M S, Robinson D L. J. Electrochem. Soc., 1953, 100(9): 411.
[112] O'Sullivan J P, Wood G C. Proc. R. Soc. London A, 1970, 317: 511.
[113] Heber K V. Electrochem. Acta, 1978, 23(2): 135.
[114] Thompson G E, Wood G C. Corrososion: Aqueous Processed and Passive Films, 1983, 23: 205.
[115] Young L. Anodic Oxide Films. New York:Academic Press, 1961: 116.
[116] 方东(Fang D). 中南大学博士论文(Doctoral Dissertation of Central South University). 2011.
[117] Fang D, Luo Z P, Liu S Q, Zeng T F, Liu L, Xu J, Bai Z K, Xu W L. Opt. Mater., 2013, 35: 1461.
[118] Fang D, Liu S Q, Luo Z P, Xiong C X, Xu W L. Appl. Surf. Sci., 2012, 258: 6217.
[119] Parkhutik V P, Shershulsky V I. J. Phys. D:Appl. Phys., 1992, 25: 1258.
[120] Diggle J W, Downie T C, Goulding C W. Chem. Rev., 1969, 69: 365.
[121] Chen W, Wang F B, Ruan M H. Sci. Adv. Mater., 2009, 1: 25.
[122] Su Z X, Hahner G, Zhou W Z. J. Mater. Chem., 2008, 18: 5787.
[123] Yuan J H, Chen W, Hui R J, Hu Y L, Xia X H. Electrochim. Acta, 2006, 51: 4589.
[124] Jo Y, Jung I, Lee I, Choi J, Tak Y. Electrochem. Comm., 2010, 12: 616.
[125] Furneaux R C, Rigby W R, Davidson A P. Nature, 1989, 337: 147.
[126] Macak J M, Tsuchiya H, Ghicov A, Yasuda K, Hahn R, Bauer S, Schmuki P. Solid State Mater. Sci., 2007, 11: 3.
[127] Yin A J, Guico R S, Xu J. Nanotechnolo., 2007, 18: 35304.
[128] Thompson G E. Thin Solid Films, 1997, 297: 192.
[129] Parkhutik V P, Despic A. Springer US: Modern Aspects of Electrochemistry, 1989, 20: 401.
[130] Shingubara S. J. Nanoparticle Res., 2003, 5: 17.
[131] Ono S, Masuko N. J. Surf. Coat Tech., 2003, 169/170: 139.
[132] Jagminience A, Valincius G, Riaukaite A, Jagminas A. J. Cryst. Growth Des., 2005, 274: 622.
[133] Wood G C, O'Sullivan J P, Vaszko B. J. Electrochem. Soc., 1968, 115: 618.
[134] Li A P, Muller F, Birner A, Gosele U. J. Appl. Phys., 1998, 84: 6023.
[135] Vrublevsky I, Parkoun V, Schreckenbach J. Appl. Surf. Sci., 2005, 242(3/4): 333.
[136] Azevedo W M, Carvalho D D, Khoury H J, Vasconcelos E A, Silva E F. Mater. Sci. Eng. B, 2004, 112: 171.
[137] Suh J S, Lee J S. Appl. Phys. Lett., 1999, 75: 2047.
[138] Sulka G D, Parkola K. Thin Solid Films, 2006, 515: 338.
[139] Prasad S, Quijano. Bioelectronics, 2006, 7: 1219.
[140] Domanska M M, Norek M, Stepniowski W J, Budner B. Electrochim. Acta, 2013, 105: 424.
[141] Zhou X, Thompson G E, Potts G. Trans. Inst. Met. Finish, 2000, 78: 210.
[142] Sadasivan V, Richter C P, Menon L, Williams P F. AIChE J., 2005, 51: 649.
[143] Stepniowski W J, Domanska M, Norek M, Czujko T. Mater. Lett., 2014, 117: 69.
[144] Stepniowski W J, Norek M, Michalska-Domanska M, Bombalska A, Nowak-Stepniowska A, Kwasny M, Bojar Z. Appl. Surf. Sci., 2012, 259: 324.
[145] Nishinaga O, Kikuchi T, Natsui S, Suzuki R O. Sci. Rep., 2013, 3: 2748.
[146] Kikuchi T, Nishinaga O, Natsui S, Suzuki R O. Electrochim. Acta, 2014, 137: 728.
[147] Flamme K E, Popat K C, Leoni L, Markiewicz E, Tempa T J, Roman B B, Grimes C A, Desai T A. Biomaterials, 2007, 28: 2638.
[148] Kim Y, Jung B, Lee H, Kim H, Lee K, Park H. Actuator. B, 2009, 141: 441.
[149] Ng K Y, Lin Y, Ngan A H W. J. Mech. Phys. Solids, 2011, 59: 251.
[150] Zhao Y, Chen M, Zhang Y, Xu T, Liu W. Mater. Lett., 2005, 59: 40.
[151] Wang X, Han G. Microelectron Eng., 2003, 66: 166.
[152] Zhao N Q, Jiang X X, Shi C S, Li J J, Zhao Z G, Du X W. J. Mater. Sci., 2006, 42: 3878.
[153] Larsson C, Thomsaon P, Aronsson B O, Rodahl M, Lausmaa J, Kasemo B, Erison L E. Biomaterials, 1996, 17: 605.
[154] Chu S Z, Wada K, Inoue S, Isogai M, Katsuta Y, Yasumori A. J. Electrochem. Soc., 2006, 153: B384.
[155] Mozalev A, Mozaleva I, Sakairi M, Takahashi H. Electrochim. Acta, 2005, 50: 5065.
[156] Tajima S, Baba N, Shimizu K, Mizuki I. Electrocomp. Sci. Tech., 1976, 3: 91.
[157] Bellemare J, Sirois F, Menard D. J. Electrochem. Soc., 2014, 161: E75.
[158] Kikuchi T, Yamamoto T, Suzuki R O. Appl. Surf. Sci., 2013, 284: 907.
[159] Ono S, Saito M, Asoh H. Electrochim. Acta, 2005, 51: 827.
[160] Sun B, Li J, Jin X, Zhou C Q, Hao Q L, Gao X F, Electrochim. Acta, 2013, 112: 327.
[161] Vrublevsky I A, Chernyakova K V, Ispas A, Bund A, Zavadski S. Thin Solid Films, 2014, 556: 230.
[162] Pashchanka M, Schneider J. Phys. Chem., 2013, 15: 7070.
[163] Kikuchi T, Nishinaga O, Natsui S, Suzuki R O. ECS Electrochem. Lett., 2014, 3: C25.
[164] Kikuchi T, Yamamoto T, Natsui S, Suzuki R O. Electrochim. Acta, 2014, 123: 14.
[165] Kikuchi T, Nakajima D, Kawashima J, Natsui S, Suzuki R O. Appl. Surf. Sci., 2014, 313: 276.
[166] Gong D, Grimes C A, Varghese O K, Hu W, Singh R S, Chen Z, Dickey E C. J. Mater. Res., 2001, 16: 3331.
[167] Ruan C, Paulose M, Varghese O K, Grimes C A. Sol. Ener. Mater. Sol. Cells, 2006, 90: 1283.
[168] Lockman Z, Ismail S, Sreekantan S, Mende L S, Driscoll J L M. Nanotechnology, 2010, 21: 055601.
[169] Nakayama K, Kubo T, Tsubokura A, Nishikitani Y, Masuda H. ECS Meeting Abstracts, 2006, 502: 819.
[170] Richter C, Wu Z, Panaitescu E, Willey R J, Menon L. Adv. Mater., 2007, 19: 946.
[171] Richter C, Panaitescu E, Willey R J, Menon L. J. Mater. Res., 2007, 22: 1624.
[172] Ruan C, Paulose M, Varghese O K, Mor G K, Grimes C A. J. Phys. Chem. B, 2005, 109: 15754.
[173] Macak J M, Tsuchiya H, Taveira L, Aldabergerova S, Schmuki P. Angew. Chem., Int. Ed., 2005, 44: 7463.
[174] Shankar K, Mor G K, Prakasam H E, Yoriya S, Paulose M, Varghese O K, Grimes C A. Nanotechnology, 2007, 18: 065707.
[175] Ghicov A, Tsuchiya H, Macak J M, Schmuki P. Electrochem. Commun., 2005, 7: 505.
[176] Macak J M, Sirotna K, Schmuki P. Electrochim. Acta, 2005, 50: 3679.
[177] Sreekantan S, Lockman Z, Hazan R, Tasbihi M, Tong L K, Mohamed A R. J.Alloys Compd., 2009, 485: 478.
[178] Tsuchiya H, Macak J M, Taveira L, Balaur E, Ghicov A, Sirotna K, Schmuki P. Electrochem. Commun., 2005, 7: 576.
[179] Liu Z, Liu H, Hashimoto T, Thompson G E, Skeldon P. Mater. Charact., 2014, 98: 102.
[180] Roman I, Trusca R D, Soare M L, Fratila C, Krasicka-Cydzik E, Stan M S, Dinischiotu A. Mater. Sci. Eng. C, 2014, 37: 374.
[181] Nischk M, Mazierski P, Gazda M, Zaleska A. Appl. Catal. B, 2014, 144: 674.
[182] Antony R P, Mathews T, Ramesh C, Murugesan N, Dasgupta A, Dhara S, Dash S, Tyagi A K. Int. J. Hydrogen Energy, 2012, 37: 8268.
[183] Jha H, Roy P, Hahn R, Paramasivam I, Schmuki P. Electrochem. Commun., 2011, 13: 302.
[184] Tsuchiya H, Macak J M, Sieber I, Schmuki P. Small, 2005, 1: 722.
[185] Wang L N, Shen C, Shinbine A, Luo J L. Thin Solid Films, 2013, 531: 277.
[186] Ali G, Park Y J, Kim H J, Sung O C. Nanoscale Res. Lett., 2014, 9(1): 553.
[187] Muratore F, Baron-Wieche? A, Gholinia A, HashimotoT, Skeldon P, Thompson G E. Electrochim. Acta, 2011, 58: 389.
[188] Wang L N, Luo J L. Mater. Sci. Eng. C, 2011, 31(4): 748.
[189] Belwalkar A, Grasing E, Geertruyden W V, Huang Z, Misiolek W Z. J. Memb. Sci., 2008, 319(1/2): 192.
[190] Chung C K, Liu T Y, Chang W T. Microsyst. Technol., 2010,16: 1451.
[191] Huang B, Guo Y F, Tian Y L, Wen Y W, Shan B, Chen R. ECS, 2013, 50: 279.
[192] Fang D, Chen S S, Jiang M, Li Q, Luo Z P, Liu L, Xiong C X. Mater. Sci. Semicon. Proc., 2014, 18: 105.
[193] Fang D, Yu J G, Luo Z P, Liu S Q, Huang K L, Xu W L. J. Solid State Electrochem., 2012, 16: 1219.
[194] Fang D, Li L C, Xu W L, Wang Y L, Jiang M, Guo X Q, Liu X, Cao G Y, Li G Z, Gang L B, Wang N F, Luo Z P. Mater. Sci. Eng. B, 2014, 179: 71.
[195] Masuda H, Yada K, Osaka A. Jpn. J. Appl. Phys., 1998, 37: L1340.
[196] Masuda H, Satoh M. Jpn. J. Appl. Phys., 1996, 35: L126.
[197] Bi Z H, Parans P M, Menchhofer P A, Dehoff R R, Bridges C A, Chi M F, Guo B K, Sun X G, Dai S. J. Power Sources, 2013, 222: 461.
[198] Yu J F, Wang D, Huang Y N, Fan X, Tang X, Gao C, Li J L, Zou D C, Wu K. Nanoscale Res. Lett., 2011, 6: 94.
[199] Chen T, Qiu L B, Yang Z B, Cai Z B, Ren J, Li H P, Lin H J, Sun X M, Peng H S. Angew. Chem. Int. Ed., 2012, 51: 11977.
[1] Zhang He, Zhang Chi, Song Ye. Fabrication of Anodic Titania Nanotube Arrays with Tunable Morphologies [J]. Progress in Chemistry, 2016, 28(6): 773-783.
[2] Wang Jing, Fan Haowen, Zhang He, Chen Qun, Liu Yi, Ma Weihua. Anodizing Process of Titanium and Formation Mechanism of Anodic TiO2 Nanotubes [J]. Progress in Chemistry, 2016, 28(2/3): 284-295.
[3] Zhu Xufei, Han Hua, Qi Weixing, Lu Chao, Jiang Longfei, Duan Wenqiang. Theoretical Foundation and Limitation of Two-Step Anodizing Technology [J]. Progress in Chemistry, 2012, 24(11): 2073-2086.
[4] Zhang Yufang,Zhang Zhengguo,Fang Xiaoming**. Synthesis of One-Dimensional TiO2 Nanomaterials and Their Nanostructures [J]. Progress in Chemistry, 2007, 19(04): 494-501.