中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (11): 1531-1541 DOI: 10.7536/PC150531 Previous Articles   Next Articles

• Review and comments •

Synthesis Chemistry of High-Density Fuels for Aviation and Aerospace Propulsion

Pan Lun, Deng Qiang, E Xiutianfeng, Nie Genkuo, Zhang Xiangwen, Zou Jijun*   

  1. Key Laboratory for Advanced Fuel and Chemical Propellant of Ministry of Education, Collaborative Innovative Center of Chemical Science and Engineering(Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No.21222607, U1462119, 20906069, 21476168), the Program for New Century Excellent Talents in University(No.NCET-09-0594), the Foundation for the Author of National Excellent Doctoral Dissertation(No.200955), the National Defense Basic Scientific Research Program(No.B1420110127), the Weaponry and Equipment Pre-Research Program(No.625010304), and the Tianjin Municipal Natural Science Foundation(No.15JCZDJC37300).
PDF ( 2398 ) Cited
Export

EndNote

Ris

BibTeX

There has been a consistent drive to improve the volumetric energy content of liquid fuels to extend the flight distance, flight speed and loading capacity of aerospace vehicles. Compared with conventional jet fuels like aviation kerosene and rocket kerosene, high-density liquid hydrocarbon fuels can provide more propulsion energy and thus are specifically important to promote the performance of volume-limited aerospace vehicles. In this review, the molecular characteristics of high-density fuels and the strategy to synthesize them are first discussed. Then the important progress in synthesis of several typical fuels is summarized, including multi-cyclic and alkyl-diamondoid fuels synthesized by cycloaddition, hydrogenation and isomerization reactions, highly-strained fuels such as cyclopropanated hydrocarbons, quadricyclane and pentacyclo[5.4.0.02,6.03,10.05,9]undecane synthesized via cyclopropanation and photoisomerization, high-density biofuels synthesized from cyclic biomass-derived compounds via polymerization, condensation and alkylation reactions, and nano-suspension fuels prepared by surface-modification and stabilization of nanoparticles(aluminum, boron and carbon) in liquid fuels. Specifically, the catalysts and reaction mechanism involved in these processes are highlighted for better controlling the reactions towards higher synthesis efficiency. Also the parameters of typical fuels synthesized using the above-mentioned processes are listed to show the potential for practical application. Finally, an outlook for the synthesis of high-density fuel is given.

Contents
1 Introduction
2 Molecular characteristic of high-density fuels
3 Synthesis of polycyclic hydrocarbon fuels
3.1 Oligomerization reaction
3.2 Hydrogenation reaction
3.3 Isomerization reaction
4 Synthesis of highly strained fuels
4.1 Cyclopropanated hydrocarbons
4.2 Quadricyclane
4.3 Pentacyclo[5.4.0.02,6.03,10.05,9]undecane and dimer
5 Synthesis of high-density biofuels
5.1 Pinene-derived fuels
5.2 Lignocellulose-derived fuels
6 Synthesis of nano-fluid fuels
7 Conclusion

CLC Number: 

[1] Chung H S, Chen C S H, Kremer R A, Boulton J R. Energy Fuels, 1999, 13:641.
[2] 邹吉军(Zou J J), 郭成(Guo C), 张香文(Zhang X W), 王莅(Wang L), 米镇涛(Mi Z T). 推进技术(Journal of Propulsion Technology), 2014, 35:1419.
[3] 邹吉军(Zou J J), 张香文(Zhang X W), 王莅(Wang L), 米镇涛(Mi Z T). 含能材料(Chinese Journal of Energetic Materials), 2007, 15:411.
[4] Zhang X, Jiang Q, Xiong Z Q, Zou J J, Wang L, Mi Z. Chem. Res. Chinese Univ., 2008, 24:175.
[5] Li Y, Zou J J, Zhang X, Wang L, Mi Z. Fuel, 2010, 89:2522.
[6] 张香文(Zhang X W), 姜凯(Jiang K), 邹吉军(Zou J J), 王莅(Wang L), 米镇涛(Mi Z T). 化工学报(CIESC Journal), 2007, 58:2658.
[7] Han H, Zou J J, Zhang X, Wang L. Appl. Catal. A, 2009, 367:84.
[8] Zou J J, Xu Y, Zhang X, Wang L. Appl. Catal. A, 2012, 421/422:79.
[9] Deng Q, Zhang X, Wang L, Zou J J. Chem. Eng. Sci., 2015, 135:540.
[10] Kim S, Han J, Kwon T S, Park Y K, Jeon J K. Catal. Today, 2014, 232:69.
[11] Kwak K Y, Kim M S, Lee D W, Cho Y H, Han J, Kwon T S, Lee K Y. Fuel, 2014, 137:230.
[12] Wang W, Cong Y, Chen S, Sun C, Wang X, Zhang T. Top. Catal., 2015, 58:350.
[13] Zou J J, Zhang X, Kong J, Wang L. Fuel, 2008, 87:3655.
[14] 王磊(Wang L), 邹吉军(Zou J J), 孔京(Kong J), 张香文(Zhang X W), 王莅(Wang L), 米镇涛(Mi Z T). 化工学报(CIESC Journal), 2009, 60:912.
[15] Zou J J, Xiong Z, Wang L, Zhang X, Mi Z. J. Mol. Catal. A:Chem., 2007, 271:209.
[16] Zou J J, Xiong Z, Zhang X, Liu G, Wang L, Mi Z. Ind. Eng. Chem. Res., 2007, 46:4415.
[17] Zhang X, Jiang K, Jiang Q, Zou J J, Wang L, Mi Z. Chinese Chem. Lett., 2007, 18:673.
[18] Sibi M G, Singh B, Kumar R, Pendem C, Sinha A K. Green Chem., 2012, 14:976.
[19] Wang L, Zhang X, Zou J J, Han H, Li Y, Wang L. Energy Fuels, 2009, 23:2383.
[20] 张香文(Zhang X W), 苗谦(Miao Q), 邹吉军(Zou J J), 邢恩会(Xing E H), 王莅(Wang L), 米镇涛(Mi Z T). 化工学报(CIESC Journal), 2007, 58:3059.
[21] Xing E, Zhang X, Wang L, Mi Z. Green Chem., 2007, 9:589.
[22] Sun C M, Li G. Appl. Catal. A, 2011, 402:196.
[23] Huang M Y, Wu J C, Shieu F S, Lin J J. Catal. Commun., 2009, 10:1747.
[24] Huang M Y, Wu J C, Shieu F S, Lin J J. Fuel, 2010, 90:1012.
[25] Wang L, Zou J J, Zhang X, Wang L. Fuel, 2012, 91:164.
[26] Wang L, Zou J J, Zhang X, Wang L. Energy Fuels, 2011, 25:1342.
[27] Ma T, Feng R, Zou J J, Zhang X, Wang L. Ind. Eng. Chem. Res., 2013, 52:2486.
[28] Oh C H, Park D I, Ryu J H, Cho J H, Han J S. Bull. Korean Chem. Soc., 2007, 28:322.
[29] Zou J J, Zhu B, Wang L, Zhang X, Mi Z. J. Mole. Catal. A, 2008, 286:63.
[30] Zou J J, Zhang M Y, Zhu B, Wang L, Zhang X, Mi Z. Catal. Lett., 2008, 124:139.
[31] Zou J J, Liu Y, Pan L, Wang L, Zhang X. Appl. Catal. B, 2010, 95:439.
[32] 王文涛(Wang W T), 丛昱(Cong Y), 王晓东(Wang X D), 张涛(Zhang T). 含能材料(Chinese Journal of Energetic Materials), 2014, 22:141.
[33] Feng R, Zou J J, Zhang X, Wang L, Zhao H. J. Org. Chem., 2012, 77:10065.
[34] Simmons H E, Blanchard E P, Smith R D. J. Am. Chem. Soc., 1964, 86:1347.
[35] Pan L, Feng R, Peng H, E X T F, Zou J J, Wang L, Zhang X. RSC Adv., 2014, 4:50998.
[36] Pan L, Zou J J, Zhang X, Wang L. Ind. Eng. Chem. Res., 2010, 49:8526.
[37] Pan L, Wang S, Zou J J, Huang Z F, Wang L, Zhang X. Chem. Commun., 2014, 50:988.
[38] Zou J J, Pan L, Wang L, Zhang X. Molecular Photochemistry-Various Aspects, InTech, 2012, 41.
[39] Pan L, Zou J J, Wang S, Huang Z F, Yu A, Wang L, Zhang X. Chem. Commun., 2013, 49:6593.
[40] Pan L, Wang S, Zou J J, Huang Z F, Wang L, Zhang X. Chem. Commun., 2014, 50:988.
[41] Wang S, Pan L, Song J J, Mi W, Zou J J, Wang L, Zhang X. J. Am. Chem. Soc., 2015, 137:2975.
[42] Pan L, Zou J J, Wang S, Huang Z, Zhang X, Wang L. Appl. Surf. Sci., 2013, 268:252.
[43] Huang Z F, Zou J J, Pan L, Wang S, Zhang X, Wang L. Appl. Catal. B, 2014, 147:167.
[44] Pan L, Wang S, Mi W, Song J, Zou J J, Wang L, Zhang X. Nano Energy, 2014, 9:71.
[45] Huang Z F, Song J, Pan L, Wang Z, Zhang X, Zou J J, Mi W, Zhang X, Wang L. Nano Energy, 2015, 12:646.
[46] Huang Z F, Song J, Pan L, Jia X, Li Z, Zou J J, Zhang X, Wang L. Nanoscale, 2014, 6:8865.
[47] Huang Z F, Pan L, Zou J J, Zhang X, Wang L. Nanoscale, 2014, 6:14044.
[48] Huang Z F, Song J, Pan L, Lv F, Wang Q, Zou J J, Zhang X, Wang L. Chem.Commun., 2014, 50:10959.
[49] 邱贤平(Qiu X P),韦伟(Wei W),王亚(Wang Y),陈克海(Chen K H),鲁统洁(Lu T J),金凤(Jin F),叶丹阳(Ye D Y). 含能材料(Chinese Journal of Energetic Materials), 2015, 23, 33.
[50] 史盛斌(Shi S B),范桂娟(Fan G J),杨世源(Yang S Y),廖龙渝(Liao L Y),张红梨(Zhang H L),李金山(Li J S). 含能材料(Chinese Journal of Energetic Materials), 2015, 23:120.
[51] Alan P M, Deshpande N, Madhusudhan R G. American Chemical Society Division of Fuel Chemistry, 1989, 34:946.
[52] 王希迪(Wang X D).大连理工大学硕士论文(Master Dissertation of Dalian University of Technology), 2014.
[53] 赵庆华(Zhao Q H),刘济威(Liu J W).火炸药学报(Chinese Journal of Explosives & Propellants), 2008, 31:82.
[54] Huber G W, Iborra S, Corma A. Chem. Rev., 2006, 106:4044.
[55] Liu G, Yan B, Chen G. Renew. Sustain. Energy Rev., 2013, 25:59.
[56] Harvey B G, Wright M E, Quintana R L. Energy Fuels, 2010, 24:267.
[57] Meylemans H A, Baldwin L C, Harvey B G. Energy Fuels, 2013, 27:883.
[58] Zou J J, Chang N, Zhang X, Wang L. ChemCatChem, 2012, 4:1289.
[59] Meylemans H A, Quintana R L, Harvey B G. Fuel, 2012, 97:560.
[60] Nie G, Zou J J, Feng R, Zhang X, Wang L. Catal. Today, 2014, 234:271.
[61] Yang J, Li N, Li G, Wang W, Wang A, Wang X, Cong Y, Zhang T. Chem. Commun., 2014, 50:2572.
[62] Sheng X, Li N, Li G, Wang W, Yang J, Cong Y, Wang A, Wang X, Zhang T. Sci. Rep., 2014, 5:9565.
[63] Yang Y, Du Z, Huang Y, Lu F, Wang F, Gao J, Xu J. Green Chem., 2013, 15:1932.
[64] Li G, Li N, Wang X, Sheng X, Li S, Wang A, Cong Y, Wang X, Zhang T. Energy Fuels, 2014, 28:5112.
[65] Alonso D M, Bond J Q, Dumesic J A. Green Chem., 2010, 12:1493.
[66] Lorenzo D, Santos A, Simón E, Romero A. Ind. Eng. Chem. Res., 2013, 52:2257.
[67] Mahajan Y S, Kamath R S, Kumbhar P S, Mahajani S M. Ind. Eng. Chem. Res., 2008, 47:25.
[68] Deng Q, Nie G, Pan L, Zou J J, Zhang X, Wang L. Green Chem., 2015,17:4473
[69] E X T F, Zhang Y, Zou J J, Zhang X, Wang L. Mater. Lett., 2014, 118:196.
[70] E X T F, Zhang Y, Zou J J, Wang L, Zhang X. Ind. Eng. Chem. Res., 2014, 53:12312.
[71] Yue L, Lu X, Chi H, Guo Y, Xu L, Fang W, Li Y, Hu S. Fuel, 2014, 121:149.
[72] Guo Y, Yang Y, Fang W, Hu S. Appl. Catal. A, 2014, 469:213.
[73] Guo Y, Yang Y, Xiao J, Fang W. Fuel, 2014, 117:932.
[74] E X T F, Zhi X, Zhang Y, Li C, Zou J J, Zhang X, Wang L. Chem. Eng. Sci., 2015, 129:9.
[1] Jiawei Xie, Xiangwen Zhang, Junjian Xie, Genkuo Nie, Lun Pan, Jijun Zou*. Synthesis of High-Density Jet Fuels from Biomass [J]. Progress in Chemistry, 2018, 30(9): 1424-1433.
[2] Yuan Zhengqiu, Long Jinxing, Zhang Xinghua, Xia Ying, Wang Tiejun, Ma Longlong. Catalytic Conversion of Lignocellulose into Energy Platform Chemicals [J]. Progress in Chemistry, 2016, 28(1): 103-110.
[3] Zhang Jiaren, Deng Tianyin, Liu Haichao*. Catalytic Production of Liquid Biofuels from Triglyceride Feedstocks and Lignocellulose [J]. Progress in Chemistry, 2013, 25(0203): 192-208.
[4] . Chemocatalytic Transformation of Sugars to Transportation Fuels [J]. Progress in Chemistry, 2010, 22(09): 1844-1851.
[5] Kuang Tingyun1,2*,Bai Kezhi1,Yang Xiushan2. Suggestions on the Development Strategy of Bioenergy in China [J]. Progress in Chemistry, 2007, 19(0708): 1060-1063.
[6] Qiang Liu1,2,Xinhua Xu2*,Guanglei Ren2,Wei Wang1. Enzymatic Biofuel Cells [J]. Progress in Chemistry, 2006, 18(11): 1530-1537.