中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (12): 1743-1753 DOI: 10.7536/PC150529 Previous Articles   Next Articles

• Review and comments •

Progress of the Experimental and Theoretical Studies on Aum(SR)n Clusters

Tian Zhimei1,2, Liu Wangdan1, Cheng Longjiu1*   

  1. 1. College of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China;
    2. School of Chemistry and Materials Engineering, Fuyang Teachers College, Fuyang 236037, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21273008, 21573001).
PDF ( 1264 ) Cited
Export

EndNote

Ris

BibTeX

Due to the special optical, electronic properties, particular physical/chemical properties, thiolate protected gold nanoclusters (Aum(SR)n, in which m and n are the numbers of Au and SR) have potential applications in nanocatalysis, biomedicine and optical devices. Two breakthroughs in Aum(SR)n clusters are the crystal structure determinations of Au102(SR)54 and Au25(SR)18- clusters, which uncover the new Au-S chemical bonding features as well as the new atomic packing structures in Aum(SR)n clusters. In this paper, major advances of the Aum(SR)n clusters in the experimentally determined crystal structures are generalized. This is followed by the introduction of the progresses in the experimentally synthesized Aum(SR)n clusters with mass spectroscopy and the progresses made by the density functional theory predictions. We combine our study subject to generalize superatom complex model, superatom-network model and super valence bond model which are used to interpret the stability and chemical bonding patterns of Aum(SR)n clusters. Moreover, we take several Aum(SR)n clusters as examples to introduce the applications of the three models. Finally, we give future outlook of the Aum(SR)n clusters.

Contents
1 Introduction
2 Experiments and theoretical predictions of Aum(SR)n clusters
2.1 Aum(SR)n clusters with single crystal structures
2.2 Aum(SR)n clusters with mass spectroscopy
2.3 Aum(SR)n clusters by DFT structural predictions
3 Theoretical models for Aum(SR)n clusters
3.1 Superatom complex (SAC) model
3.2 Superatom-network (SAN) model
3.3 Super valence bond (SVB) model
4 Conclusion and outlook

CLC Number: 

[1] Jung J, Kang S, Han Y K. Nanoscale, 2012, 4: 4206.
[2] Zhu M Z, Aikens C M, Hendrich M P, Gupta R, Qian H F, Schatz G C, Jin R C. J. Am. Chem. Soc., 2009, 131: 2490.
[3] Cheng L J, Zhang X Z, Jin B K, Yang J L. Nanoscale, 2014, 6: 12440.
[4] Lu W, Chan K T, Wu S X, Chen Y, Che C M. Chem. Sci., 2012, 3: 752.
[5] Zhu M Z, Aikens C M, Hollander F J, Schatz G C, Jin R C. J. Am. Chem. Soc., 2008, 130: 5883.
[6] Jin R C. Nanoscale, 2015, 7: 1549.
[7] Pei Y, Zeng X C. Nanoscale, 2012, 4: 4054.
[8] Jin R C, Nobusada K. Nano Res., 2014, 7: 285.
[9] Negishi Y, Nobusada K, Tsukuda T. J. Am. Chem. Soc., 2005, 127: 5261.
[10] Akola J, Walter M, Whetten R L, Häkkinen H, Grönbeck H. J. Am. Chem. Soc., 2008, 130: 3756.
[11] Chen S, Wang S X, Zhong J, Song Y B, Zhang J, Sheng H T, Pei Y, Zhu M Z. Angew. Chem. Int. Ed., 2015, 54: 3145.
[12] Cheng L J, Ren C D, Zhang X Z, Yang J L. Nanoscale, 2013, 5: 1475.
[13] Jadzinsky P D, Calero G, Ackerson C J, Bushnell D A, Kornberg R D. Science, 2007, 318: 430.
[14] Jian N, Stapelfeldt C, Hu K J, Fröba M, Palmer R E. Nanoscale, 2015, 7: 885.
[15] Knoppe S, Boudon J, Dolamic I, Dass A, Bürgi T. Anal. Chem., 2011, 83: 5056.
[16] Knoppe S, Dolamic I, Dass A, Bürgi T. Angew. Chem. Int. Ed., 2012, 51: 7589.
[17] Lopez Acevedo O, Tsunoyama H, Tsukuda T, Aikens C M. J. Am. Chem. Soc., 2010, 132: 8210.
[18] Levi Kalisman Y, Jadzinsky P D, Kalisman N, Tsunoyama H, Tsukuda T, Bushnell D A, Kornberg R D. J. Am. Chem. Soc., 2011, 133: 2976.
[19] Heaven M W, Dass A, White P S, Holt K M, Murray R W. J. Am. Chem. Soc., 2008, 130: 3754.
[20] Brust M, Walker M, Bethell D, Schiffrin D J, Whyman R. J. Chem. Soc., Chem. Commun., 1994, 801.
[21] Whetten R L, Khoury J T, Alvarez M M, Murthy S, Vezmar I, Wang Z, Stephens P W, Cleveland C L, Luedtke W, Landman U. Adv. Mater., 1996, 8: 428.
[22] Schaaff T G, Knight G, Shafigullin M N, Borkman R F, Whetten R L. J. Phys. Chem. B, 1998, 102: 10643.
[23] Schaaff T G, Shafigullin M N, Khoury J T, Vezmar I, Whetten R L. J. Phys. Chem. B, 2001, 105: 8785.
[24] Price R C, Whetten R L. J. Am. Chem. Soc., 2005, 127: 13750.
[25] Wyrwas R B, Alvarez M M, Khoury J T, Price R C, Schaaff T G, Whetten R L. Eur. Phys. J. D, 2007, 43: 91.
[26] Ingram R S, Hostetler M J, Murray R W, Schaaff T G, Khoury J T, Whetten R L, Bigioni T P, Guthrie D K, First P N. J. Am. Chem. Soc., 1997, 119: 9279.
[27] Chen S W, Ingram R S, Hostetler M J, Pietron J J, Murray R W, Schaaff T G, Khoury J T, Alvarez M M, Whetten R L. Science, 1998, 280: 2098.
[28] Templeton A C, Wuelfing W P, Murray R W. Accounts Chem. Res., 2000, 33: 27.
[29] Lee D, Donkers R L, Wang G, Harper A S, Murray R W. J. Am. Chem. Soc., 2004, 126: 6193.
[30] Guo R, Song Y, Wang G L, Murray R W. J. Am. Chem. Soc., 2005, 127: 2752.
[31] Wang G L, Guo R, Kalyuzhny G, Choi J P, Murray R W. J. Phys. Chem. B, 2006, 110: 20282.
[32] Tracy J B, Kalyuzhny G, Crowe M C, Balasubramanian R, Choi J P, Murray R W. J. Am. Chem. Soc., 2007, 129: 6706.
[33] Qian H F, Zhu M Z, Wu Z K, Jin R C. Accounts Chem. Res., 2012, 45: 1470.
[34] Zhu M Z, Lanni E, Garg N, Bier M E, Jin R C. J. Am. Chem. Soc., 2008, 130: 1138.
[35] Negishi Y, Takasugi Y, Sato S, Yao H, Kimura K, Tsukuda T. J. Am. Chem. Soc., 2004, 126: 6518.
[36] Donkers R L, Lee D, Murray R W. Langmuir, 2004, 20: 1945.
[37] Iwasa T, Nobusada K. J. Phys. Chem. C, 2007, 111: 45.
[38] Crasto D, Malola S, Brosofsky G, Dass A, Häkkinen H. J. Am. Chem. Soc., 2014, 136: 5000.
[39] Yang H Y, Wang Y, Edwards A J, Yan J Z, Zheng N F. Chem. Commun., 2014, 50: 14325.
[40] Qian H F, Eckenhoff W T, Zhu Y, Pintauer T, Jin R C. J. Am. Chem. Soc., 2010, 132: 8280.
[41] Zeng C J, Qian H F, Li T, Li G, Rosi N L, Yoon B, Barnett R N, Whetten R L, Landman U, Jin R C. Angew. Chem., 2012, 124: 13291.
[42] Das A, Liu C, Zeng C J, Li G, Li T, Rosi N L, Jin R C. J. Phys. Chem. A, 2014, 118: 8264.
[43] Zeng C J, Li T, Das A, Rosi N L, Jin R C. J. Am. Chem. Soc., 2013, 135: 10011.
[44] Das A, Li T, Nobusada K, Zeng C, Rosi N L, Jin R C. J. Am. Chem. Soc., 2013, 135: 18264.
[45] Das A, Li T, Li G, Nobusada K, Zeng C J, Rosi N L, Jin R C. Nanoscale, 2014, 6: 6458.
[46] Zeng C J, Liu C, Chen Y X, Rosi N L, Jin R C. J. Am. Chem. Soc., 2014, 136: 11922.
[47] Nimmala P R, Knoppe S, Jupally V R, Delcamp J H, Aikens C M, Dass A. J. Phys. Chem. B, 2014, 118: 14157.
[48] Crasto D, Barcaro G, Stener M, Sementa L, Fortunelli A, Dass A. J. Am. Chem. Soc., 2014, 136: 14933.
[49] Das A, Liu C, Byun H Y, Nobusada K, Zhao S, Rosi N, Jin R C. Angew. Chem., 2015, 127: 3183.
[50] Dass A, Theivendran S, Nimmala P R, Kumara C, Jupally V R, Fortunelli A, Sementa L, Barcaro G, Zuo X, Noll B C. J. Am. Chem. Soc., 2015, 137: 4610.
[51] Zeng C J, Chen Y X, Kirschbaum K, Appavoo K, Sfeir M Y, Jin R C. Science Adv., 2015, 1: e1500045.
[52] Hamouda R, Bertorelle F, Rayane D, Antoine R, Broyer M, Dugourd P. Int. J. Mass Spectrom., 2013, 335: 1.
[53] Shibu E S, Pradeep T. Chem. Mater., 2011, 23: 989.
[54] Yao Q, Yu Y, Yuan X, Yu Y, Xie J P, Lee J Y. Small, 2013, 9: 2696.
[55] Dass A, Theivendran S, Nimmala P R, Kumara C, Jupally V R, Fortunelli A, Sementa L, Barcaro G, Zuo X, Noll B C. J. Am. Chem. Soc., 2015, 137: 4610.
[56] Azubel M, Koivisto J, Malola S, Bushnell D, Hura G L, Koh A L, Tsunoyama H, Tsukuda T, Pettersson M, Häkkinen H, Kornberg R D. Science, 2014, 345: 909.
[57] Qian H F, Jin R C. Nano Lett., 2009, 9: 4083.
[58] Dass A. J. Am. Chem. Soc., 2009, 131: 11666.
[59] Qian H F, Zhu Y, Jin R C. J. Am. Chem. Soc., 2010, 132: 4583.
[60] Negishi Y, Sakamoto C, Ohyama T, Tsukuda T. J. Phys. Chem. Lett., 2012, 3: 1624.
[61] Zeng C J, Chen Y X, Li G, Jin R C. Chem. Commun., 2014, 50: 55.
[62] Nimmala P R, Yoon B, Whetten R L, Landman U, Dass A. J. Phys. Chem. A, 2013, 117: 504.
[63] Nimmala P R, Dass A. J. Am. Chem. Soc., 2011, 133: 9175.
[64] Nimmala P R, Dass A. J. Am. Chem. Soc. 2014, 136: 17016.
[65] Kumara C, Dass A. Anal. Chem., 2014, 86: 4227.
[66] Qian H F, Jin R C. Chem. Mater., 2011, 23: 2209.
[67] Qian H F, Jin R C. Chem. Commun., 2011, 47: 11462.
[68] Li G, Zeng C J, Jin R C. J. Am. Chem. Soc., 2014, 136: 3673.
[69] Fields Zinna C A, Sardar R, Beasley C A, Murray R W. J. Am. Chem. Soc., 2009, 131: 16266.
[70] Liu C, Lin J, Shi Y W, Li G. Nanoscale, 2015, 7: 5987.
[71] Yu Y, Luo Z T, Chevrier D M, Leong D T, Zhang P, Jiang D E, Xie J P. J. Am. Chem. Soc., 2014, 136: 1246.
[72] Kumara C, Zuo X B, Ilavsky J, Cullen D, Dass A. J. Phys. Chem. C, 2015, 119: 11260.
[73] Kohn W, Sham L J. Phys. Rev., 1965, 140: A1133.
[74] Hohenberg P, Kohn W. Phys. Rev., 1964, 136: B864.
[75] Perdew J P, Burke K, Ernzerhof M. Phys. Rev. Lett., 1996, 77: 3865.
[76] Perdew J P, Wang Y. Phys. Rev. B, 1992, 45: 13244.
[77] Tao J, Perdew J P, Staroverov V N, Scuseria G E. Phys. Rev. Lett., 2003, 91: 146401.
[78] Tlahuice Flores A, Jose Yacamán M, Whetten R L. Phys. Chem. Chem. Phys., 2013, 15: 19557.
[79] Tang Q, Jiang D E. J. Phys. Chem. C, 2015, 119: 2904.
[80] Pei Y, Pal R, Liu C Y, Gao Y, Zhang Z H, Zeng X C. J. Am. Chem. Soc., 2012, 134: 3015.
[81] Cheng L J, Yuan Y, Zhang X Z, Yang J L. Angew. Chem. Int. Ed., 2013, 52: 9035.
[82] Gao Y, Shao N, Zeng X C. ACS Nano, 2008, 2: 1497.
[83] Jiang D E, Walter M, Akola J. J. Phys. Chem. C, 2010, 114: 15883.
[84] Hulkko E, Lopez Acevedo O, Koivisto J, Levi Kalisman Y, Kornberg R D, Pettersson M, Häkkinen H. J. Am. Chem. Soc., 2011, 133: 3752.
[85] Häkkinen H, Walter M, Grönbeck H. J. Phys. Chem. B, 2006, 110: 9927.
[86] Chaki N K, Negishi Y, Tsunoyama H, Shichibu Y, Tsukuda T. J. Am. Chem. Soc., 2008, 130: 8608.
[87] Pei Y, Gao Y, Zeng X C. J. Am. Chem. Soc., 2008, 130: 7830.
[88] Jiang D E, Tiago M L, Luo W D, Dai S. J. Am. Chem. Soc., 2008, 130: 2777.
[89] Jiang D E, Chen W, Whetten R L, Chen Z F. J. Phys. Chem. C, 2009, 113: 16983.
[90] Alvarez M M, Khoury J T, Schaaff T G, Shafigullin M N, Vezmar I, Whetten R L. J. Phys. Chem. B, 1997, 101: 3706.
[91] Schaaff T G, Shafigullin M N, Khoury J T, Vezmar I, Whetten R, Cullen W G, First P N, Gutierrez Wing C, Ascensio J, Jose Yacaman M J. J. Phys. Chem. B, 1997, 101: 7885.
[92] Häkkinen H, Barnett R N, Landman U. Phys. Rev. Lett., 1999, 82: 3264.
[93] Garzón I, Rovira C, Michaelian K, Beltrán M, Ordejón P, Junquera J, Sánchez Portal D, Artacho E, Soler J. Phys. Rev. Lett., 2000, 85: 5250.
[94] Jiang D E, Luo W D, Tiago M L, Dai S. J. Phys. Chem. C, 2008, 112: 13905.
[95] Lopez Acevedo O, Akola J, Whetten R L, Gronbeck H, Häkkinen H. J. Phys. Chem. C, 2009, 113: 5035.
[96] Tlahuice Flores A, Black D M, Bach S B H, Jose Yacamán M, Whetten R L. Phys. Chem. Chem. Phys., 2013, 15: 19191.
[97] Tlahuice Flores A. Phys. Chem. Chem. Phys., 2015, 17: 5551.
[98] Koivisto J, Malola S, Kumara C, Dass A, Häkkinen H, Pettersson M. J. Phys. Chem. Lett., 2012, 3: 3076.
[99] Walter M, Akola J, Lopez Acevedo O, Jadzinsky P D, Calero G, Ackerson C J, Whetten R L, Grönbeck H, Häkkinen H. Proc. Natl. Acad. Sci. U. S. A., 2008, 105: 9157.
[100] Cheng L J, Yang J L. J. Chem. Phys., 2013, 138: 141101.
[101] Jiang D E, Whetten R L, Luo W D, Dai S. J. Phys. Chem. C, 2009, 113: 17291.
[102] Gao Y. J. Phys. Chem. C, 2013, 117: 8983.
[103] Zubarev D Y, Boldyrev A I. Phys. Chem. Chem. Phys., 2008, 10: 5207.
[104] Pei Y, Lin S S, Su J C, Liu C Y. J. Am. Chem. Soc., 2013, 135: 19060.
[105] Pei Y, Tang J, Tang X Q, Huang Y Q, Zeng X C. J. Phys. Chem. Lett., 2015, 6: 1390.
[106] Wan X K, Lin Z W, Wang Q M. J. Am. Chem. Soc., 2012, 134: 14750.
[107] Yuan Y, Cheng L J, Yang J L. J. Phys. Chem. C, 2013, 117: 13276.
[108] Tian Z M, Cheng L J. Phys. Chem. Chem. Phys., 2015, 17: 13421.
[1] Lu Wensheng, Wang Haifei, Zhang Jianping, Jiang Long. Gold Nanorods: Synthesis, Growth Mechanism and Purification [J]. Progress in Chemistry, 2015, 27(7): 785-793.
[2] Li Zhiguo, Zhang Lingling. Influence Factors on the Performance of DNA Self-Assembled Monolayers on Gold [J]. Progress in Chemistry, 2014, 26(05): 846-855.
[3] Yan Fei, Liu Xiangyang, Zhao Dongjiao, Bao Weixing, Dong Xiaoping, Xi Fengna*. Application of Fluorescent Gold Nanoclusters for the Determination of Small Molecules [J]. Progress in Chemistry, 2013, 25(05): 799-808.
[4] Ge Yujun, Chi Cheng, Wu Rong, Guo Xia, Zhang Qiao, Yang Jian. Gold Nanorods-Based Core-Shell Nanostructures: Synthesis, Characterization and Optical Properties [J]. Progress in Chemistry, 2012, 24(05): 776-783.
[5] Liu Zhao, Jin Shenshen, Zhu Manzhou. Liquid-Phase Synthesis of Gold Nanoclusters [J]. Progress in Chemistry, 2011, 23(10): 2055-2064.
[6] Luo Chunhua1,2 Dong Qiujing1 Zheng Zhaohui2 Ding Xiaobin2** Peng Yuying2**. Gold Nanoparticles Coated with Stimuli Responsive Polymer [J]. Progress in Chemistry, 2009, 21(12): 2674-2681.
[7] Li Li Ji Weijie Au Chek-Tong. Gold Nanoparticles Supported on Mesoporous Silica and Their Catalytic Applications [J]. Progress in Chemistry, 2009, 21(09): 1742-1749.
[8] Yan Ya Li Jinru Yang Yun. Synthesis of Spherical Monodisperse Gold Nanoparticles [J]. Progress in Chemistry, 2009, 21(05): 971-981.
[9] . Antitumor Au(III) Complexes [J]. Progress in Chemistry, 2009, 21(04): 644-653.
[10]

Ma Zhanfang**|Tian Le|Di Jing|Ding Teng

. Bio-Detection, Cellular Imaging and Cancer Photothermal Therapy Based on Gold Nanorods [J]. Progress in Chemistry, 2009, 21(01): 134-142.
[11] Yang Xiaochao1|Qian Junzhen1|Wan Qiaoling1 ,Mo Zhihong1,2*. Functional Gold Clusters and Their Applications in Biomedicine [J]. Progress in Chemistry, 2007, 19(05): 689-694.
[12] Wang Donghui1,2,Cheng Daiyun1,Hao Zhengping2*,Shi Xicheng1. Carbon Monoxide Low-temperature Oxidation over Nanosize Gold Catalyst [J]. Progress in Chemistry, 2002, 14(05): 360-.