中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (12): 1732-1742 DOI: 10.7536/PC150520 Previous Articles   Next Articles

• Review and comments •

Molecular Shuttles Based on Host-Guest Recognition Driven by External-Stimuli

Xu Guohe1,2, Li Jie1,2, Deng Jinni1, Yin Lv1, Zheng Zhaohui1*, Ding Xiaobin1*   

  1. 1. Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China;
    2. University of Chinese Academy of Sciences, Beijing 100039, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 51373175).
PDF ( 1334 ) Cited
Export

EndNote

Ris

BibTeX

Molecular shuttle, as a kind of molecular machines, is one of the research intriguing interest in supramolecular chemistry. Molecular shuttles are mostly based on the host-guest recognition. They have potential applications in many areas such as nano-structured functional materials, molecular switches, molecular logic gates, memory devices and so on. In this paper, the progress in molecular shuttles is systematically reviewed, including the conception, mechanisms and potential applications, focusing on the molecular shuttles driven by external-stimuli. According to the difference of external-stimuli, molecular shuttles can be classified into light-driven, pH-driven, redox-driven and multi-mode-driven molecular shuttles. The structure characteristics, motion law and progress of molecular shuttles driven by different external-stimuli, are elaborated. The problem of responsive molecular shuttles researches is analyzed, and the future development of responsive molecular shuttles is prospected.

Contents
1 Introduction
2 Mechanism of molecular shuttles
3 Molecular shuttles driven by different external-stimuli
3.1 Light-driven molecular shuttles
3.2 pH-driven molecular shuttles
3.3 Redox-driven molecular shuttles
3.4 Multi-mode-driven molecular shuttles
4 Potential applications of molecular shuttles
4.1 Potential applications in molecular logic gates
4.2 Potential applications in molecular switches
4.3 Potential applications in energy transfer
5 Prospects

CLC Number: 

[1] Balzani V, Venturi M, Credi A. Weinheim: Wiley-VCH, 2003.
[2] Tian H, Wang Q C. Chem. Soc. Rev., 2006, 35: 361.
[3] Kay E R, Leigh D A, Zerbetto F. Angew. Chem. Int. Ed., 2007, 46: 72.
[4] Balzani V, Credi A. Silvi S, Venturi M. Chem. Soc. Rev., 2006, 35: 1135.
[5] Sindelar V, Silvi S, Kaifer A E. Chem. Commun., 2006, 20: 2185.
[6] Sauvage J P. Chem. Commun., 2005, 12:1507.
[7] Wenz G, Han B H, Mvller A. Chem. Rev., 2006, 106: 782.
[8] Credi A, Tian H. Adv. Funct. Mater., 2007, 17: 679.
[9] Michl J, Sykes E C H. Nano Focus., 2009, 3: 1042.
[10] Ma X, Tian H. Chem. Soc. Rev., 2010, 39: 70.
[11] Xue M, Yang Y, Chi X, Zhang Z, Huang F. Acc. Chem. Res., 2012, 45: 1294.
[12] Shi J, Pang T, Xu Y, Wang X, Zhu J. Chem. Rev., 2015, DOI: 10.1021/cr5005869.
[13] Amabilino D B, Stoddart J F. Chem. Rev., 1995, 95: 2725.
[14] Balzan V, Credi A, Raymo F M, Stoddart J F. Angew. Chem. Int. Ed., 2000, 39: 3349.
[15] Kay E R, Leigh D A, Zerbetto F. Angew. Chem. Int. Ed., 2007, 46: 72.
[16] Ma X, Tian H. Chem. Soc. Rev., 2010, 39: 70.
[17] Coskun A, Banaszak M, Astumian R D, Stoddart J F, Grzybowski B A. Chem. Soc. Rev., 2012, 41: 19.
[18] Gatti F G, Leon S, Wong J K, Bottari G, Altieri A, Morales M A, Teat S J, Frochot C, Leigh D A, Brouwer A M. Proc. Natl. Acad. Sci. U.S.A., 2003, 100: 10.
[19] Leigh D A, Thomson A R. Org. Lett., 2006, 8: 5377.
[20] Vella S J, Tiburcio J, Loeb S J. Chem. Commun., 2007, 45: 4752.
[21] Huang Y L, Hung W C, Lai C C, Liu Y H, Peng S M, Chiu S H. Angew. Chem., 2007, 119: 6749.
[22] Hirose K, Shiba Y, Ishibashi K, Doi Y, Tobe Y. Chem. Eur. J., 2008, 14: 3427.
[23] Hung W C, Wang L Y, Lai C C, Liu Y H, Peng S M, Chiu S H. Tetrahedron Lett., 2009, 50: 267.
[24] Coutrot F, Busseron E. Chem. Eur. J., 2009, 15: 5186.
[25] Zheng H, Zhou W, Lv J, Yin X, Li Y, Liu H, Li Y. Chem. Eur. J., 2009, 15: 13253.
[26] Jiang Y, Guo J B, Chen C F. Org. Lett., 2010, 12: 4248.
[27] Suzuki S, Nakazono K, Takata T. Org. Lett., 2010, 12: 712.
[28] Gan Q, Ferrand Y, Bao C, Kauffmann B, Grelard A, Jiang H, Huc I. Science, 2011, 331: 1172.
[29] Zazza C, Mancini G, Brancato G, Sanna N, Barone V. Comput. Theor. Chem., 2012, 985: 53.
[30] Liu P, Li W, Liu L, Wang L, Ma J. J. Phys. Chem. A, 2014, 118: 9032.
[31] Cao Z Q, Li H, Yao J, Zou L, Qu D H, Tian H. Asian J. Org. Chem., 2014, 3: 1.
[32] Zhang Z., Han C., Yu G., Huang F. Chem. Sci., 2012, 3: 3026.
[33] Gao L, Zhang Z, Zheng B, Huang F. Polym. Chem., 2014, 5: 5734.
[34] Anelli P L, Spencer N, Stoddart J F. J. Am. Chem. Soc., 1991, 113: 5131.
[35] Dugas H. Bioorganic Chemistry. 3Ed. NY: Springer-Varlay, 1996.
[36] Kool E T. Chem. Rev., 1997, 97: 1473.
[37] Balzani V, De Cola L. Supramolecular Chemistry. The Netherlands: Kluwer Academic Publishers, 1992. 137.
[38] Qu D H, Wang Q C, Ren J, Tian H. Angew. Org. Lett., 2004, 6: 2085.
[39] Murakami H, Kawabuchi A, Matsumoto R, Ido T, Nakashima N. J. Am. Chem. Soc., 2005, 127: 15891.
[40] Ma X, Wang Q C, Qu D H, Xu Y, Ji F Y, Tian H. Adv. Funct. Mater., 2007, 17: 829.
[41] Bottari G, Leigh D A, Pérez E M. J. Am. Chem. Soc., 2003, 125: 13360.
[42] Zhou W D, Chen D G, Li J B, Xu J L, Lv J, Liu H B, Li Y L. Org. Lett., 2007, 9: 3929.
[43] Coskun A, Fredman D C, Li H, Patel K, Kha-tib H A, Stoddart J F. J. Am. Chem. Soc., 2009, 131: 2493.
[44] Zhu L L, Yan H, Wang X J, Zhao Y L. J. Org. Chem., 2012, 77: 10168.
[45] Ashton P R, Ballardini R, Balzani V, Baxter I, Credi A, Fyfe M C T, Gandolfi M T, Gómez-López M, Martinez-Diaz M V, Piersanti A, Spencer N, Stoddart J F, Venturi M, White A J P, Williams D J. J. Am. Chem. Soc., 1998, 120: 11932.
[46] Badji D? J D, Balzani V, Credi A, Silvi S, Stoddart J F. Science, 2004, 303: 1845.
[47] Balzani V, Clemente-León M, Credi A, Lowe J N, Badji D? J D, Stoddart J F, Williams D J. Chem. Eur. J., 2003, 9: 5348.
[48] Jiang Q, Zhang H Y, Han M, Ding Z J, Liu Y. Org. Lett., 2010, 12: 1728.
[49] Crowley J D, Leigh D A, Lusby P J, McBurney R T, Perret-Aebi L, Petzold C, Slawin A M Z, Symes M D. J. Am. Chem. Soc., 2007, 129: 15085.
[50] Armaroli N, Balzani V, Collin J P, Gavina P, Sauvage J P, Ventura B. J. Am. Chem. Soc., 1999, 121: 4397.
[51] Altieri A, Gatti F G, Kay E R, Leigh D A, Martel D, Paolucci F, Slawin A M Z, Wong J K Y. J. Am. Chem. Soc., 2003, 125: 8644.
[52] Fioravanti G, Haraszkiewicz N, Kay E R, Mendoza S M, Bruno C, Marcaccio M, Wiering P G, Paolucci F, Rudolf P, Brouwer A M, Leigh D A. J. Am. Chem. Soc., 2008, 130: 2593.
[53] Tseng H R, Vignon S A, Stoddart J F. Angew. Chem. Int. Ed., 2003, 42: 1491.
[54] Nygaard S, Leung K, Aprahamian I, Ikeda T, Saha S, Laursen B W, Kim S Y, Hansen S W, Stein P C, Flood A H, Stoddart J F, Jeppesen J O. J. Am. Chem. Soc., 2007, 129: 960.
[55] Zhao Y L, Dichtel W R, Trabolsi A, Saha S, Aprahamian I, Stoddart J F. J. Am. Chem. Soc., 2008, 130: 11294.
[56] Bissell R A, Córdova E, Kaifer A E, Stoddart J F. Nature, 1994, 369: 133.
[57] De Silva A P, James M R. Nat. Mater., 2006, 5: 787.
[1] Yuping Tang, Yanmei He, Yu Feng, Qinghua Fan. Asymmetric Supramolecular Catalysis Based on Macrocyclic Host Molecules [J]. Progress in Chemistry, 2018, 30(5): 476-490.
[2] Yang Zaiwen, Liu Xiangrong, Zhao Shunsheng, He Jinmei. Chemically Driven [2] Rotaxane Molecular Shuttles [J]. Progress in Chemistry, 2014, 26(12): 1899-1913.
[3] Qian Xiaohong, Jin Can, Zhang Xiaoning, Jiang Yan, Lin Chen, Wang Leyong. Squaramide Derivatives and Their Applications in Ion Recognition [J]. Progress in Chemistry, 2014, 26(10): 1701-1711.
[4] Ma Mingfang, Xing Pengyao, Li Shangyang, Chu Xiaoxiao, Wang Bo, Hao Aiyou. Advances of Host-Guest Supramolecular Vesicles and Their Properties in Drug Delivery [J]. Progress in Chemistry, 2014, 26(08): 1317-1328.
[5] Lin Qi, Liu Xin, Chen Pei, Wei Taibao, Zhang Youming. Colorimetric and Fluorescent Cyanide Anion Sensors [J]. Progress in Chemistry, 2013, 25(12): 2131-2146.
[6] Lin Qi, Chen Pei, Liu Juan, Fu Yongpeng, Zhang Youming, Wei Taibao. Colorimetric and Fluorescent Chemosensors for Hg2+ Ions [J]. Progress in Chemistry, 2013, 25(07): 1177-1186.
[7] Ms Xiang|Wang Qiaochun|Tian He**. Photo-Driven Molecular Shuttles [J]. Progress in Chemistry, 2009, 21(01): 106-115.