中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (11): 1628-1639 DOI: 10.7536/PC150513 Previous Articles   Next Articles

• Review and comments •

The Separation and Enrichment of Glycoproteins or Glycopeptides Based on Nanoparticles

Ding Peng2, Chen Xian2, Li Xiuling1*, Qing Guangyan2, Sun Taolei2,3*, Liang Xinmiao1   

  1. 1. Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China;
    2. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China;
    3. School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No.21475129, 21275114, 51473131) and the Major State Basic Research Development Program of China(973 Program)(No.2013CB933002).
PDF ( 1838 ) Cited
Export

EndNote

Ris

BibTeX

As one of the most important post-translational modifications, protein glycosylation has a significant effect on the structures and functions of proteins. Many low-abundance endogenous glycoproteins/glycopeptides in the serum or tissue extracts are biomarkers with higher clinical sensitivity and specificity, which could provide valuable information to explore the pathogenesis of many diseases, discover disease biomarkers and develop proteins based new drugs. However, it is still a great challenge for glycoproteomics to selectively separate and enrich the glycoproteins/glycopeptides from the complex biological samples due to their extremely low concentrations. Nanoparticle materials have been attracted much attention in the separation and enrichment of glycoproteins/glycopeptides due to their large surface to volume ratio, numerous affinity sites and unique structures. In this work, the recent progress for the separation and enrichment of glycoproteins/glycopeptides based on the nanoparticles, including gold, SiO2, TiO2, nanodiamond and polymer nanoparticles are reviewed. Finally, the challenges and prospects for the methods of the separation and enrichment of glycoproteins/glycopeptides are briefly proposed.

Contents
1 Introduction
2 The separation and enrichment of glycoproteins or glycopeptides based on nanoparticles
2.1 Detonation nanodiamond(dND)
2.2 Magnetic nanoparticls
2.3 Polymer nanoparticles
2.4 Gold nanoparticles
2.5 SiO2 nanoparticles
2.6 TiO2 nanoparticles
2.7 Glycopeptide enrichment:methods comparison
3 Conclusion and outlook

CLC Number: 

[1] Wells L, Visseller K, Hart G W. Science, 2001, 291:2376.
[2] Rudd P M, Elliott T, Cresswell P, Wilson I A, Dwek R A. Science, 2001, 291:2370.
[3] Miyoshi E, Ito Y, Miyoshi Y. Journal of Oncology, 2010, 816595.
[4] Joseph A L, John N W. Nature Reviews Cancer, 2005, 5:845.
[5] Rademacher T W, Parekh R B, Dwek R A, Isenberg D, Rook G, Axford J S, Roitt I. Springer Semin. Immunopathol., 1988, 10:231.
[6] Drake P M, Cho W, Li B S, Prakobphol A, Johansen E, Anderson N L, Regnier F E, Gibson B W, Fisher S J. Clin. Chem., 2010, 56:223.
[7] 曹晶(Cao J), 聂爱英(Nie A Y), 陈瑶函(Chen Y H), 王胜(Wang S), 陆豪杰(Lu H J), 杨芃原(Yang P Y). 化学进展(Progress in Chemistry), 2009(21):1888.
[8] 程功(Cheng G), 王志刚(Wang Z G), 刘彦琳(Liu Y L), 孙德慧(Sun D H), 倪嘉缵(Ni J Z).化学进展(Progress in Chemistry), 2013, 25(4):620.
[9] Xu C J, Xu K M, Gu H W, Zhong X F, Guo Z H, Zheng R K, Zhang X X, Xu B. J. Am. Chem. Soc., 2004, 126:3392.
[10] Zhao H, Li Y J, Hu Y. Clinical Proteomics, 2014, 11:21.
[11] Bodnar E D, Perreault H. Anal. Chem., 2013, 85:10895.
[12] Ushizawa K, Sato Y, Mitsumori T, Machinami T, Ueda T, Ando T. Chem. Phys. Lett., 2012, 351:105.
[13] Kossovsky N, Gelman A, Hnatyszyn H J, Rajguru S, Garrell R L, Torbati S, Freitas S S F, Chow G M. Bioconjugate Chem., 1995, 6:507.
[14] Cheng C Y, Perevedentseva E, Tu J S, Chung P H, Cheng C L, Liu K K, Chao J I, Chen P H, Chang C C. Appl. Phys. Lett., 2007, 90:163903.
[15] Huang L C, Chang H C. Langmuir, 2004, 20:5879.
[16] Wei L M, Zhang W, Lu H J, Yang P Y. Talanta, 2010, 80:1298.
[17] Chang Y, Huang C, Lin C, Chang H, Wu C. Proteomics, 2010, 10:2961.
[18] Chang C, Wu C, Wang Y, Chang H. Anal. Chem., 2008, 80:3791.
[19] Yeap W S, Tan Y Y, Loh K P. Anal. Chem., 2008, 80:4659.
[20] Xu G B, Zhang W, Wei L M, Lu H J, Yang P Y. Analyst, 2013, 138:1876.
[21] Safarik I, Safarikova M. Biomagn. Res. Technol., 2004, 2:7.
[22] Shinkai M, Ito A. Adv. Biochem. Eng. Biotechnol., 2004, 91:191.
[23] Li Y, Leng T H, Lin H Q, Deng C H, Xu X Q, Yao N, Yang P Y, Zhang X M. J. Proteome Res., 2007, 6:4498
[24] Li Y, Lin H Q, Deng C H, Yang P Y, Zhang X M. Proteomics, 2008, 8:238.
[25] Li Y, Wu J S, Qi D W, Xu X Q, Deng C H, Yang P Y, Zhang X M. Chem. Commun., 2008, 5:564.
[26] Tang J, Liu Y, Yin P, Yao G P, Yan G Q, Deng C H, Zhang X M. Proteomics, 2010, 10:2000.
[27] Hong J, Xu D M, Gong P J, Sun H W, Dong L, Yao S D. J. Mol. Catal. B:Enzymatic, 2007, 45:84.
[28] Lübbe A S, Alexiou C, Bergemann C. J. Surg. Res., 2001, 95:200.
[29] Briscoe D M, Alexander S I. Curr. Opin. Immunol., 1998, 10:525.
[30] Morozov V N, Morozova Y T. Anal. Chim. Acta, 2006, 564:40.
[31] Mykhaylyk O, Vlaskou D, Tresilwised N, Pithayanukul P, Möller W, Plank C. J. Magn. Magn. Mater., 2007, 311:275.
[32] Sparbier K, Koch S, Kessler I, Wenzel T, Kostrzewa M. J. Biomol. Tech., 2005, 4:407.
[33] Lee J H, Kim Y S. J. Am. Soc. Mass Spectrom, 2005, 16:1456.
[34] Zhou W, Yao N, Yao G P, Deng C H, Zhang X M, Yang P Y. Chem. Commun., 2008, 48:5577.
[35] Pan M R, Sun Y F, Zheng J, Yang W L. ACS Appl. Mater. Interfaces, 2013, 5:8351.
[36] Wang Y L, Liu M B, Xie L Q, Fang C Y, Xiong H M, Lu H J. Anal. Chem., 2014, 86:2057.
[37] Wang X, Emmett M R, Marshall A G. Anal. Chem., 2010, 82:6542.
[38] Sun C, Chen P, Chen Q, Sun L, Kang X, Qin X, Liu Y. Acta Biochim. Biophys. Sinica, 2012, 44:765.
[39] Li X L, Shen G B, Zhang F F, Yang B C, Liang X M. J. Chromator. B, 2013, 941:45.
[40] Pan Y, Bai H, Ma C, Deng Y, Qin W, Qian X. Talanta, 2013, 115:842.
[41] Sheng Q Y, Ke X Y, Li K Y, Yu D P, Liang X M. J. Chromatogr. A, 2013, 1291:56.
[42] Wan H H, Yan J Y, Yu L, Shen Q Y, Zhang X L, Xue X Y, Li X L, Liang X L. Analyst, 2011, 136:4422.
[43] Zheng J N, Xiao Y, Wang L, Lin Z, Yang H H, Zhang L, Chen G N. J. Chromatogr. A, 2014, 1358:29.
[44] Shen A J, Li X L, Dong X F, Wei J, Guo Z M, Liang X M. J. Chromatogr. A, 2013, 1314:63.
[45] Yeh C H, Chen S H, Li D T, Lin H P, Huang H J, Chang C I, Shih W L, Chern C L, Shi F K, Hsu J L. J. Chromatogr. A, 2012, 1224:70.
[46] Xiong Z C, Zhao L, Wang F J, Zhu J, Qin H Q, Wu R A, Zhang W B, Zou H F. Chem. Commun., 2012, 48:8138.
[47] Xiong Z C, Qin H Q, Wan H, Huang G, Zhang Z, Dong J, Zhang L Y, Zhang W B, Zou H F. Chem. Commun., 2013, 49:9284.
[48] Chen Y J, Xiong Z C, Zhang L Y, Zhao J Y, Zhang Q A, Peng L, Zhang W B, Ye M L, Zou H F. Nanoscale, 2015, 7:3100.
[49] Zhang J, Ni Y L, Zheng X L. J. Sep. Sci., 2015, 38:81.
[50] Lapeyre V, Ancla C, Catargi B, Ravaine V. J. Colloid Interface Sci., 2008, 327:316.
[51] Shen W W, Ma C N, Wang S F, Xiong H M, Lu H J, Yang P Y. Chem. Asian J., 2010, 5:1185.
[52] Qu Y Y, Liu J X, Yang K G, Liang Z, Zhang L H, Zhang Y K. Chem. Eur. J., 2012, 18:9056.
[53] Qiu J, Zhang Y, Lu H, Yang P. Acta Chimica Sinica, 2011, 18:2123.
[54] Templeton A C, Chen S W, Gross S M, Murray R W. Langmuir, 1999, 15:66.
[55] Zhang L J, Xu Y W, Yao H L, Xie L Q, Yao J, Lu H J, Yang P Y. Chem. Eur. J., 2009, 15:10158.
[56] Yao G P, Zhang H Y, Deng C H. Rapid Comm. Mass Spect., 2009, 23:3493.
[57] Tran T H, Park S Y, Lee H, Park S, Kim B, Kim O H, Oh B C, Lee D, Lee H. Analyst, 2012, 137:991.
[58] Qi D W, Zhang H Y, Tang J, Deng C H, Zhang X M. J. Phys. Chem. C, 2010, 114:9221.
[59] Tang J, Liu Y, Qi D, Yao Y, Deng C, Zhang X. Proteomics, 2009, 9:5046.
[60] Hu J J, Ma R N, Liu F, Chen Y L, Ju H X. RSC Adv., 2014, 4:28856.
[61] Zhang L J, Xu Y W, Yao H L, Xie L Q, Yao J, Lu H J, Yang P Y. Chem. Eur. J., 2009, 15:10158.
[62] Xu Y W, Wu Z X, Zhang L J, Lu H J, Yang P Y, Webley P A, Zhao D Y. Anal. Chem., 2009, 81:503.
[63] Ma R N, Hu J J, Cai Z W, Ju H X. Nanoscale, 2014, 6:3150.
[64] Jiang B, Liang Y, Wu Q, Jiang H, Yang K G, Zhang L H, Liang Z, Peng X J, Zhang Y K. Nanoscale, 2014, 6:5616.
[65] Xiong Z C, Zhao L, Wang F J, Zhu J, Qin H Q, Wu R A, Zhang W B, Zou H F. Chem. Commun., 2012, 48:8138.
[66] Huang G, Xiong Z C, Qin H Q, Zhu J, Sun Z, Zhang Y, Peng X J, Ou J J, Zou H F. Anal. Chim. Acta, 2014, 809:61.
[67] Li X L, Liu H L, Qing G Y, Wang S T, Liang X L. J. Matter. Chem. B, 2014, 2:2276.
[68] Kresge C T, Leonowicz M E, Roth W J, Vartuli J C, Beck J S. Nature, 1992, 359:710.
[69] Yanagisawa T, Shimizu T, Kuroda K, Kato C. Bull. Chem. Soc. Jpn., 1990, 63:1535.
[70] Ma R N, Hu J J, Cai Z W, Ju H X. Nanoscale, 2014, 6:3150.
[71] Zhao D Y, Huo Q S, Stuky G D, Feng J, Melosh N, Fredrickson G H. Science, 1998, 279:548.
[72] Wan Y, Zhao D Y. Chem. Rev., 2007, 107:2821.
[73] Lin H P, Mou C Y. Acc. Chem. Res., 2002, 35:927.
[74] Xu Y W, Wu Z X, Zhang L J, Lu H J, Yang P Y, Webley P A, Zhao D Y. Anal. Chem., 2009, 81:503.
[75] Yan Y H, Deng C H, Zheng Z F, Zhang X M, Yang P Y. Chem. Plus. Chem., 2014, 79:31.
[76] Pan Y T, Ma C, Tong W, Fan C, Zhang Q, Zhang W J, Tian F, Peng B, Qin W J, Qian X H. Anal. Chem., 2015, 87:656.
[77] Yan J Y, Li X L, Yu L, Jin Y, Zhang X L, Xue X Y, Ke Y X, Liang X L. Chem. Commun., 2010, 46:5488.
[78] Wan H L, Yan J Y, Yu L, Sheng Q Y, Zhang X L, Xue X Y, Li X L, Liang X M. Analyst, 2011, 136:4422.
[79] Larsen M R, Jensen S S, Jakobsen L A, Heegaard N H H. Mol. Cell. Proteomics, 2007, 6:1778.
[80] Wohlgemuth J, Karas M, Eichhorn T, Hendriks R, Andrecht S. Anal. Biochem., 2009, 395:178.
[81] Yan J Y, Li X L, Yu L, Jin Y, Zhang X L, Xue X Y, Ke Y X, Liang X M. Chem. Commun., 2010, 46:5488.
[82] Wang W J,Liu H, Li Z L. Chin. J. Chem., 2011, 29:2229.
[83] Palmisano G, Lendal S E, Engholm-Keller K, Leth-Larsen R, Parker B L, Larsen R. Nature Protols, 2010, 5:1974.
[84] Cao W Q, Cao J, Huang J M, Zhang L, Yao J,Xu H Q,Yang P Y. Glycoconjugated Journal, 2012, 29:433.
[85] Parker B L, Gupta P, Cordwell S J, Larsen M R, Palmisano G. J. Proteome Res., 2010, 10:1449.
[86] Zhang L, Jiang H, Yao J, Wang Y, Fang C, Yang P, Lu H. Chem. Commun., 2014, 50:1027.
[87] Cao Q, Ma C, Bai H, Li X, Yan H, Zhao Y, Ying W, Qian X. Analyst, 2014, 139:603.
[1] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[2] Feng Lu, Ting Zhao, Xiaojun Sun, Quli Fan, Wei Huang. Design of NIR-Ⅱ Emissive Rare-earth Nanoparticles and Their Applications for Bio-imaging [J]. Progress in Chemistry, 2022, 34(6): 1348-1358.
[3] Qin Zhong, Shuai Zhou, Xiangmei Wang, Wei Zhong, Chendi Ding, Jiajun Fu. Construction of Mesoporous Silica Based Smart Delivery System and its Therapeutic Application in Various Diseases [J]. Progress in Chemistry, 2022, 34(3): 696-716.
[4] Dandan Zhang, Qi Wu, Guangbo Qu, Jianbo Shi, Guibin Jiang. Quantitative Analysis of Metal Nanoparticles in Unicellular Aquatic Organisms [J]. Progress in Chemistry, 2022, 34(11): 2331-2339.
[5] Dong Yang, Keyi Gao, Baiqin Yang, Lei Lei, Lixia Wang, Chaohua Xue. Classification of Microfluidic System and Applications in Nanoparticles Synthesis [J]. Progress in Chemistry, 2021, 33(3): 368-379.
[6] Chen Liu, Qiangxiang Li, Di Zhang, Yujie Li, Jinquan Liu, Xilin Xiao. Preparation and Application of MCM-41 Mesoporous Silica in the DNA Biosensors [J]. Progress in Chemistry, 2021, 33(11): 2085-2102.
[7] Ding Jingjing, Lili Huang, Haiyan Xie. Application of Nanoparticles-Based Chemiluminescence in Diagnosis and Treatment of Inflammation and Tumor [J]. Progress in Chemistry, 2020, 32(9): 1252-1263.
[8] Miao Qin, Mengjie Xu, Di Huang, Yan Wei, Yanfeng Meng, Weiyi Chen. Iron Oxide Nanoparticles in the Application of Magnetic Resonance Imaging [J]. Progress in Chemistry, 2020, 32(9): 1264-1273.
[9] Jianlin Shi, Zile Hua. Condensed State Chemistry in the Synthesis of Inorganic Nano- and Porous Materials [J]. Progress in Chemistry, 2020, 32(8): 1060-1075.
[10] Peng Ning, Yunhui Cheng, Zhou Xu, Li Ding, Maolong Chen. Application of Metal-Organic Framework Materials in Enrichment of Active Peptides [J]. Progress in Chemistry, 2020, 32(4): 497-504.
[11] Axin Liang, Bo Tang, Liquan Sun, Xin Zhang, Huipeng Hou, Aiqin Luo. New Materials for the Separation and Enrichment of N-Glycopeptides/Glycoproteins [J]. Progress in Chemistry, 2019, 31(7): 996-1006.
[12] Rui Bai, Xiaochun Tian, Shuhua Wang, Weifu Yan, Haiyin Gang, Yong Xiao. Noble Metal Nanoparticles Produced by Microorganism [J]. Progress in Chemistry, 2019, 31(6): 872-881.
[13] Yihuan Liu, Xin Hu, Ning Zhu, Kai Guo. Microfluidic Synthesis of Micro-and Nanoparticles [J]. Progress in Chemistry, 2018, 30(8): 1133-1142.
[14] Huadong Zhang, Gongke Li*, Yufei Hu*. Applications of Halloysite Nanotubes in Separation and Enrichment [J]. Progress in Chemistry, 2018, 30(2/3): 198-205.
[15] Dongdong Zhang, Jingmin Liu, Yaoyao Liu, Meng Dang, Guozhen Fang, Shuo Wang. The Application of Nanoparticles in Drug Delivery [J]. Progress in Chemistry, 2018, 30(12): 1908-1919.