中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (11): 1566-1577 DOI: 10.7536/PC150508 Previous Articles   Next Articles

• Review and comments •

Porous Graphene Materials

Liu Xiaobo, Kou Zongkui, Mu Shichun*   

  1. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No.51372186),the Basic Research Development Program of China(973 Program)(No.2012CB215504), and the Natural Science Foundation of Hubei Province of China(No.2013CFA082).
PDF ( 2939 ) Cited
Export

EndNote

Ris

BibTeX

Porous graphene, which refers to graphene containing nanopores in the two-dimensional basal plane, has aroused great interest. Porous graphene not only retains the excellent intrinsic prosperities of original graphene, but also opens up an energy gap to generate a semiconducting carbon film. The existing nanopores can improve mass transfer efficiency when compared to inactive surface of graphene, thus the porous graphene has more widespread application perspective. Here, the aspects of theoretical base, synthesis methods and applications of porous graphene are reviewed. The synthesis methods mainly include lithography, catalytic etching, chemical vapor deposition, wet etching, carbothermal reduction, solvothermal synthesis and free radical attack. Meanwhile, the application of porous graphene predominantly focuses on fields of energy storage and conversion materials(e.g., fuel cells, supercapacitors, and lithium ion batteries), field effect transistors, chemical sensors, water desalination, molecular sieves and DNA sequencing.

Contents
1 Introduction
2 Theoretical base and properties of porous graphene
3 Synthesis of porous graphene
3.1 Lithography techniques
3.2 Catalytic etching methods
3.3 Chemical vapor deposition method
3.4 Wet etching
3.5 Carbothermal reduction method
3.6 Solvothermal synthesis
3.7 Free radical attack method
3.8 Other methods
4 Applications
4.1 Fuel cell materials
4.2 Supercapacitors electrode materials
4.3 Lithium ion battery electrode materials
4.4 Field effect transistors
4.5 Chemical sensors
4.6 Water desalination
4.7 Molecular sieve
4.8 DNA sequencing
5 Existing problems
6 Conclusion and perspectives

CLC Number: 

[1] Novoselov K S, Geim A K, Morozov S, Jiang D, Zhang Y, Dubonos S, Grigorieva I, Firsov A. Science, 2004, 306:666.
[2] Novoselov K, Geim A K, Morozov S, Jiang D, Katsnelson M, Grigorieva I, Dubonos S, Firsov A. Nature, 2005, 438:197.
[3] Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov A N. Science, 2006, 312:1191.
[4] Nair R, Blake P, Grigorenko A, Novoselov K, Booth T, Stauber T, Peres N, Geim A. Science, 2008, 320:1308.
[5] Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N. Nano Lett., 2008, 8:902.
[6] Lee C, Wei X, Kysar J W, Hone J. Science, 2008, 321:385.
[7] Li H, Cheng N, Zheng Y, Zhang X, L H, He D, Pan M, Kleitz F, Qiao S Z, Mu S. Adv. Energy. Mater., 2013, 3:1176.
[8] Du X, Skachko I, Barker A, Andrei E Y. Nat. Nanotechnol., 2008, 3:491.
[9] Zhang Y, Tan Y W, Stormer H L, Kim P. Nature, 2005, 438:201.
[10] Katsnelson M, Novoselov K, Geim A. Nature Phys., 2006, 2:620.
[11] Kane C L, Mele E J. Phys. Rev. Lett., 2005, 95:226801.
[12] Castro E V, Novoselov K, Morozov S, Peres N, Dos Santos J L, Nilsson J, Guinea F, Geim A, Neto A C. Phys. Rev. Lett., 2007, 99:216802.
[13] Zhang Y, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y R, Wang F. Nature, 2009, 459:820.
[14] Son Y W, Cohen M L, Louie S G. Phys. Rev. Lett., 2006, 97:216803.
[15] Han M Y, Özyilmaz B, Zhang Y, Kim P. Phys. Rev. Lett., 2007, 98:206805.
[16] Wei D, Liu Y, Wang Y, Zhang H, Huang L, Yu G. Nano Lett., 2009, 9:1752.
[17] Qu L, Liu Y, Baek J B, Dai L. ACS Nano, 2010, 4:1321.
[18] Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E. Science, 2006, 313:951.
[19] 陈旭(Chen X), 何大平(He D P), 木士春(Mu S C).化学进展(Progress in Chemistry), 2013, 25:1292.
[20] Yazyev O V, Helm L. Phy. Rev. B, 2007, 75:125408.
[21] Lucchese M M, Stavale F, Ferreira E M, Vilani C, Moutinho M, Capaz R B, Achete C, Jorio A. Carbon, 2010, 48:1592.
[22] Bai J, Zhong X, Jiang S, Huang Y, Duan X. Nat. Nanotechnol., 2010, 5:190.
[23] Xu P, Yang J, Wang K, Zhou Z, Shen P. Chinese. Sci. Bull., 2012, 57:2948.
[24] Blankenburg S, Bieri M, Fasel R, Mullen K, Pignedoli C A, Passerone D. Small, 2010, 6:2266.
[25] Zhao S, Xue J, Liang L, Wang Y, Yan S. J. Phys. Chem. C, 2012, 116:11776.
[26] Palaniselvam T, Aiyappa H B, Kurungot S. J. Mater. Chem., 2012, 22:23799.
[27] Yan J, Fan Z, Sun W, Ning G, Wei T, Zhang Q, Zhang R, Zhi L, Wei F. Adv. Funct. Mater., 2012, 22:2632.
[28] Zhu X, Ning G, Ma X, Fan Z, Xu C, Gao J, Xu C, Wei F. J. Mater. Chem. A, 2013, 1:14023.
[29] Merchant C A, Healy K, Wanunu M, Ray V, Peterman N, Bartel J, Fischbein M D, Venta K, Luo Z, Johnson A T, Drndic M. Nano Lett., 2010, 10:2915.
[30] Han T H, Huang Y K, Tan A T, Dravid V P, Huang J. J. Am. Chem. Soc., 2011, 133:15264.
[31] Koenig S P, Wang L, Pellegrino J, Bunch J S. Nat. Nanotechnol., 2012, 7:728.
[32] Barone V, Hod O, Scuseria G E. Nano Lett., 2006, 6:2748.
[33] Li X, Wang X, Zhang L, Lee S, Dai H. Science, 2008, 319:1229.
[34] Yang J, Ma M, Li L, Zhang Y, Huang W, Dong X. Nanoscale, 2014, 6:13301.
[35] Qiu W, Nguyen P, Skafidas E. Phys. Chem. Chem. Phys., 2014, 16:1451.
[36] Pedersen T G, Flindt C, Pedersen J, Mortensen N A, Jauho A P, Pedersen K. Phys. Rev. Lett., 2008, 100:136804.
[37] Oswald W, Wu Z. Phys. Rev. B, 2012, 85(11).
[38] Zhang A, Teoh H F, Dai Z, Feng Y P, Zhang C. Appl. Phys. Lett., 2011, 98:023105.
[39] Hu L, Wyant S, Muniz A R, Ramasubramaniam A, Maroudas D. J. Appl. Phys., 2015, 117:024302.
[40] Carpenter C, Christmann A M, Hu L, Fampiou I, Muniz A, Ramasubramaniam A, Maroudas D. Appl. Phys. Lett., 2014, 104:141911.
[41] Mostério N C B, Fonseca A F. Phys. Rev. B, 2014, 89(19):195437.
[42] Lei Z, Christov N, Zhao X. Energ. Environ. Sci., 2011, 4:1866.
[43] Wu Z S, Sun Y, Tan Y Z, Yang S, Feng X, Müllen K. J. Am. Chem. Soc., 2012, 134:19532.
[44] Zheng C, Zhou X, Cao H, Wang G, Liu Z. J. Power Sources, 2014, 258:290.
[45] Berrada S, Nguyen V H, Querlioz D, Saint-Martin J, Alarcón A, Chassat C, Bournel A, Dollfus P. Appl. Phys. Lett., 2013, 103:183509.
[46] Wang H, Wang Q, Cheng Y, Li K, Yao Y, Zhang Q, Dong C, Wang P, Schwingenschlogl U, Yang W, Zhang X X. Nano Lett., 2012, 12:141.
[47] Sint K, Wang B, Král P. J. Am. Chem. Soc., 2008, 130:16448.
[48] Koenig S P, Wang L, Pellegrino J, Bunch J S. Nat. Nanotechnol., 2012, 7:728.
[49] Venkatesan B M, Bashir R. Nat. Nanotechnol., 2011, 6:615.
[50] Han S, Wu D, Li S, Zhang F, Feng X. Adv. Mater., 2014, 26:849-64.
[51] Yuan W, Chen J, Shi G. Mater. Today, 2014, 17:77.
[52] Fischbein M D, Drndi D? M. Appl. Phys. Lett., 2008, 93:113107.
[53] Ding J, Du K, Wathuthanthri I, Choi C H, Fisher F T, Yang E H. J. Vac. Sci. Technol. B, 2014, 32:06FF1.
[54] Thiele C, Felten A, Echtermeyer T J, Ferrari A C, Casiraghi C, v. Löhneysen H, Krupke R. Carbon, 2013, 64:84.
[55] Yi J, Lee D H, Lee W W, Park W I. J. Phys. Chem. Lett., 2013, 4:2099.
[56] Lin Y, Watson K A, Kim J W, Baggett D W, Working D C, Connell J W. Nanoscale, 2013, 5:7814.
[57] Tomita A, Tamai Y. J. Phys. Chem., 1974, 78:2254.
[58] Baker R, Sherwood R, Dumesic J. J. Catal., 1980, 66:56.
[59] Liu J, Cai H, Yu X, Zhang K, Li X, Li J, Pan N, Shi Q, Luo Y, Wang X. J. Phys. Chem. C, 2012, 116:15741.
[60] Di C A, Wei D, Yu G, Liu Y, Guo Y, Zhu D. Adv. Mater., 2008, 20:3289.
[61] Safron N S, Kim M, Gopalan P, Arnold M S. Adv. Mater., 2012, 24:1041.
[62] Seidel H, Csepregi L, Heuberger A, Baumgärtel H. J. Electrochem. Soc., 1990, 137:3612.
[63] Campos L C, Manfrinato V R, Sanchez-Yamagishi J D, Kong J, Jarillo-Herrero P. Nano Lett., 2009, 9:2600.
[64] Zhang Y, Li Z, Kim P, Zhang L, Zhou C. ACS Nano, 2011, 6:126.
[65] Geng D, Wu B, Guo Y, Luo B, Xue Y, Chen J, Yu G, Liu Y. J. Am. Chem. Soc., 2013, 135:6431.
[66] Kosynkin D V, Higginbotham A L, Sinitskii A, Lomeda J R, Dimiev A, Price B K, Tour J M. Nature, 2009, 458:872.
[67] Zhang Z, Sun Z, Yao J, Kosynkin D V, Tour J M. J. Am. Chem. Soc., 2009, 131:13460.
[68] Sinitskii A, Dimiev A, Kosynkin D V, Tour J M. ACS Nano, 2010, 4:5405.
[69] Zhao X, Hayner C M, Kung M C, Kung H H. ACS Nano, 2011, 5:8739.
[70] Wang X, Jiao L, Sheng K, Li C, Dai L, Shi G. Sci. Rep., 2013, 3:1996.
[71] Cheng K, He D, Peng T, Lv H, Pan M, Mu S. Electrochim. Acta, 2014, 132:356.
[72] Zhu Y, Murali S, Stoller M D, Ganesh K J, Cai W, Ferreira P J, Pirkle A, Wallace R M, Cychosz K A, Thommes M, Su D, Stach E A, Ruoff R S. Science, 2011, 332:1537.
[73] Zhang L L, Zhao X, Stoller M D, Zhu Y, Ji H, Murali S, Wu Y, Perales S, Clevenger B, Ruoff R S. Nano Lett., 2012, 12:1806.
[74] Yan J, Fan Z, Wei T, Qian W, Zhang M, Wei F. Carbon, 2010, 48:3825.
[75] Zhao X, Zhang L, Murali S, Stoller M D, Zhang Q, Zhu Y, Ruoff R S. ACS Nano, 2012, 6:5404.
[76] Zhou D, Cui Y, Xiao P W, Jiang M Y, Han B H. Nat. Commun., 2014, 5:4716.
[77] Nethravathi C, Rajamathi M. Carbon, 2008, 46:1994.
[78] Qian W, Hao R, Hou Y, Tian Y, Shen C, Gao H, Liang X. Nano Res., 2009, 2:706.
[79] Choucair M, Thordarson P, Stride J A. Nature Nanotechnol., 2009, 4:30.
[80] Zhang J, Guo B, Yang Y, Shen W, Wang Y, Zhou X, Wu H, Guo S. Carbon, 2015, 84:469.
[81] Yang R, Yang K. Carbon, 1985, 23:537.
[82] Han T H, Huang Y K, Tan A T, Dravid V P, Huang J. J. Am. Chem. Soc., 2011, 133:15264.
[83] Wu X F, Zhang J, Zhuang Y F, Li J, Han L C, Xiao F J. J. Mater. Sci., 2014, 50:1317.
[84] Williams G, Seger B, Kamat P V. ACS Nano, 2008, 2:1487.
[85] Akhavan O. Carbon, 2011, 49:11.
[86] Akhavan O. ACS Nano, 2010, 4:4174.
[87] Palaniselvam T, Valappil M O, Illathvalappil R, Kurungot S. Energ. Environ. Sci., 2014, 7:1059.
[88] Peng Y Y, Liu Y M, Chang J K, Wu C H, Ger M D, Pu N W, Chang C L. Carbon, 2015, 81:347.
[89] Lin Y, Han X, Campbell C J, Kim J W, Zhao B, Luo W, Dai J, Hu L. Adv. Func. Mater., 2015, 25:2920.
[90] Mangadlao J D, de Leon A C C, Felipe M J L, Advincula R C. Chem. Commun., 2015, 51:7629.
[91] Shao Y, Zhang S, Wang C, Nie Z, Liu J, Wang Y, Lin Y. J. Power. Sources, 2010, 195:4600.
[92] He D, Jiang Y, Lv H, Pan M, Mu S. Appl. Catal. B- Environ., 2013, 132:379.
[93] He D, Kou Z, Xiong Y, Cheng K, Chen X, Pan M, Mu S. Carbon, 2014, 66:312.
[94] He D, Cheng K, Li H, Peng T, Xu F, Mu S, Pan M. Langmuir, 2012, 28:3979.
[95] Lv X, Lv W, Wei W, Zheng X, Zhang C, Zhi L, Yang Q H. Chem. Commun., 2015, 51:3911.
[96] Su C, Acik M, Takai K, Lu J, Hao S J, Zheng Y, Wu P, Bao Q, Enoki T, Chabal Y J, Loh K P. Nat. Commun., 2012, 3:1298.
[97] Stoller M D, Park S, Zhu Y, An J, Ruoff R S. Nano Lett., 2008, 8:3498.
[98] Fan Z, Zhao Q, Li T, Yan J, Ren Y, Feng J, Wei T. Carbon, 2012, 50:1699.
[99] Zhu Y, Murali S, Stoller M D, Ganesh K, Cai W, Ferreira P J, Pirkle A, Wallace R M, Cychosz K A, Thommes M. Science, 2011, 332:1537.
[100] Wang H, Sun X, Liu Z, Lei Z. Nanoscale, 2014, 6:6577.
[101] Yoo E, Kim J, Hosono E, Zhou H S, Kudo T, Honma I. Nano Lett., 2008, 8:2277.
[102] Uthaisar C, Barone V. Nano Lett., 2010, 10:2838.
[103] Fan Z, Yan J, Ning G, Wei T, Zhi L, Wei F. Carbon, 2013, 60:558.
[104] Zhu X, Zhu Y, Murali S, Stoller M D, Ruoff R S. ACS Nano, 2011, 5:3333.
[105] Zhu X, Song X, Ma X, Ning G. ACS Appl. Mater. Inter., 2014, 6:7189.
[106] Jiao L, Zhang L, Wang X, Diankov G, Dai H. Nature, 2009, 458:877.
[107] Son Y W, Cohen M L, Louie S G. Nature, 2006, 444:347.
[108] Chen Z, Lin Y M, Rooks M J, Avouris P. Physica E., 2007, 40:228.
[109] Liu L, Zhang Y, Wang W, Gu C, Bai X, Wang E. Adv. Mater., 2011, 23:1246.
[110] Schedin F, Geim A, Morozov S, Hill E, Blake P, Katsnelson M, Novoselov K. Nat. Mater., 2007, 6:652.
[111] Wehling T, Novoselov K, Morozov S, Vdovin E, Katsnelson M, Geim A, Lichtenstein A. Nano lett., 2008, 8:173.
[112] Fowler J D, Allen M J, Tung V C, Yang Y, Kaner R B, Weiller B H. ACS Nano, 2009, 3:301.
[113] Robinson J A, Snow E S, Badescu S C, Reinecke T L, Perkins F K. Nano Lett., 2006, 6:1747.
[114] Zhang Y H, Chen Y B, Zhou K G, Liu C H, Zeng J, Zhang H L, Peng Y. Nanotechnology, 2009, 20:185504.
[115] Suk M E, Aluru N. J. Phys. Chem. Lett., 2010, 1:1590.
[116] Cohen-Tanugi D, Grossman J C. Nano Lett., 2012, 12:3602.
[117] Surwade S P, Smirnov S N, Vlassiouk I V, Unocic R R, Veith G M, Dai S, Mahurin S M. Nat. Nanotechnol., 2015.
[118] Liu H, Dai S, Jiang D E. Nanoscale, 2013, 5:9984.
[119] Suk M E, Aluru N R. J. Chem. Phys., 2014, 140:084707.
[120] Sun C, Boutilier M S, Au H, Poesio P, Bai B, Karnik R, Hadjiconstantinou N G. Langmuir, 2014, 30:675.
[121] Kasianowicz J J, Brandin E, Branton D, Deamer D W. Proc. Natl. Acad. Sci. U. S. A., 1996, 93:13770.
[122] Fologea D, Gershow M, Ledden B, McNabb D S, Golovchenko J A, Li J. Nano Lett., 2005, 5:1905.
[123] 林祥钦(Lin X Q), 李国霞(Li G X). 化学进展(Progress in Chemistry), 2011, 23:800.
[124] Peng S, Yang Z, Ni X, Zhang H, Ouyang J, Fangping O. Mater. Res. Express, 2014, 1:015044.
[125] Garaj S, Hubbard W, Reina A, Kong J, Branton D, Golovchenko J A. Nature, 2010, 467:190.
[126] Garaj S, Liu S, Golovchenko J A, Branton D. Proc. Natl. Acad. Sci.U. S. A., 2013, 110:12192.
[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Zhixuan Wang, Shaokui Zheng. Selective Ionic Removal Strategy and Adsorbent Preparation [J]. Progress in Chemistry, 2023, 35(5): 780-793.
[3] Lan Mingyan, Zhang Xiuwu, Chu Hongyu, Wang Chongchen. MIL-101(Fe) and Its Composites for Catalytic Removal of Pollutants: Synthesis Strategies, Performances and Mechanisms [J]. Progress in Chemistry, 2023, 35(3): 458-474.
[4] Yong Zhang, Hui Zhang, Yi Zhang, Lei Gao, Jianchen Lu, Jinming Cai. Surface Synthesis of Heteroatoms-Doped Graphene Nanoribbons [J]. Progress in Chemistry, 2023, 35(1): 105-118.
[5] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[6] Keqing Wang, Huimin Xue, Chenchen Qin, Wei Cui. Controllable Assembly of Diphenylalanine Dipeptide Micro/Nano Structure Assemblies and Their Applications [J]. Progress in Chemistry, 2022, 34(9): 1882-1895.
[7] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[8] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[9] Hongji Jiang, Meili Wang, Zhiwei Lu, Shanghui Ye, Xiaochen Dong. Graphene-Based Artificial Intelligence Flexible Sensors [J]. Progress in Chemistry, 2022, 34(5): 1166-1180.
[10] Yan Xu, Chungang Yuan. Preparation, Stabilization and Applications of Nano-Zero-Valent Iron Composites in Water Treatment [J]. Progress in Chemistry, 2022, 34(3): 717-742.
[11] Hui Zhang, Wei Xiong, Jianchen Lu, Jinming Cai. Magnetic Properties and Engineering of Nanographene in Ultra-High Vacuum [J]. Progress in Chemistry, 2022, 34(3): 557-567.
[12] Xing Zhan, Wei Xiong, Michael K.H Leung. From Wastewater to Energy Recovery: The Optimized Photocatalytic Fuel Cells for Applications [J]. Progress in Chemistry, 2022, 34(11): 2503-2516.
[13] Junxian Hong, Xun Zhu, Lei Ge, Mingchuan Xu, Wenzhen Lv, Runfeng Chen. The Synthesis and Applications of CsPbX3(X = Cl, Br, I) Nanocrystals [J]. Progress in Chemistry, 2021, 33(8): 1362-1377.
[14] Jing Zhang, Dingxiang Wang, Honglong Zhang. Oxidative Degradation of Emerging Organic Contaminants in Aqueous Solution by High Valent Manganese and Iron [J]. Progress in Chemistry, 2021, 33(7): 1201-1211.
[15] Xiaoxiao Xiang, Xiaowen Tian, Huie Liu, Shuang Chen, Yanan Zhu, Yuqin Bo. Controlled Preparation of Graphene-Based Aerogel Beads [J]. Progress in Chemistry, 2021, 33(7): 1092-1099.
Viewed
Full text


Abstract

Porous Graphene Materials