中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (1): 18-39 DOI: 10.7536/PC150501 Previous Articles   Next Articles

• Review and comments •

Graphene-Based Functional Materials for Information Storage: Materials, Devices and Performance

Sun Sai1, Zhuang Xiaodong2, Wang Luxin1, Wang Cheng1, Zhang Bin1,3, Chen Yu1*   

  1. 1. Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China;
    2. College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
    3. Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore 119260, Singapore
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 51333002, 21404037),the Research Fund for the Doctoral Program of Higher Education of China (No. 20120074110004), and the Fundamental Research Funds for the Central Universities (No. WJ1514311).
PDF ( 1071 ) Cited
Export

EndNote

Ris

BibTeX

Two-dimensional graphene has been at the center of a significant research effort due to its high thermal conductivity, high Young's modulus, charge/hole mobility, fracture strength, specific Brunauer-Emmett-Teller surface area, and the quantum Hall effect. Similar to the functionalization of fullerenes, by using covalent or non-covalent modification methods, some organic functional groups, small molecules and polymers have been covalently grafted to the graphene surface or non-covalently doped into the graphene system to form a larger number of graphene derivatives designed for optoelectronics, photonics and biologies. Molecular computation using graphene as the data storage medium has ignited the revolution in information technology industries, making it possible to store more data in less space and with less energy. The data storage performance, stability and reliability of the graphene memories have advanced significantly towards practical information storage applications. A number of essential strategies can be employed to control and optimize the switching characteristics of graphene memories. In this comprehensive review, recent research progress on the graphene-based functional materials, including graphene, graphene oxide(GO), reduced graphene oxide (RGO), chemically modified GO/RGO, graphene/GO/RGO-based composites, and others, as active materials for information storage, has been systematically summarized and discussed. The key problems that need to be solved urgently in the materials design and device fabrication and the future development of this area have also been pointed out.

Contents
1 Introduction
2 Graphene-based information storage devices
2.1 Intrinsic graphene prepared by chemical vapor deposition (CVD)
2.2 Intrinsic graphene prepared by mechanical exfoliation
2.3 Graphene nanoribbons
2.4 Graphene oxide (GO)
2.5 Reduced graphene oxide (RGO)
2.6 Nitrogen-doped RGO (N-RGO)
3 Covalent modified GO/RGO-based information storage devices
3.1 Conjugated polymer-functionalized GO/RGO
3.2 Non-conjugated polymer-functionalized GO/RGO
3.3 Small molecule-functionalized GO/RGO
3.4 Metal nanoparticle-functionalized GO/RGO
4 Graphene/GO/RGO composites-based information storage devices
4.1 Polymer-graphene/GO/RGO composites
4.2 Small molecule-graphene/GO/RGO composites
4.3 Polymer-graphene quantum dot composites
5 Graphene(GO, RGO)/inorganics heterojunction-based information storage devices
5.1 Graphene/inorganics
5.2 GO(RGO)/inorganics
6 Graphene and RGO-based electrodes for information storage
6.1 Graphene electrodes
6.2 RGO electrodes
7 Summary and outlook

CLC Number: 

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306: 666.
[2] Wu J, Pisula W, Muellen K. Chem. Rev., 2007, 107: 718.
[3] Chen F, Tao N. J. Acc. Chem. Res., 2009, 42: 429.
[4] Dreyer D R, Ruoff R S, Bielawski C W. Angew. Chem. Int. Ed., 2010, 49: 9336.
[5] Chen Y, Zhang B, Liu G, Zhuang X D, Kang E T. Chem. Soc. Rev., 2012, 41: 4688.
[6] Ritter K A, Lyding J W. Nanotechnology, 2008, 19: 015704.
[7] Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov A N, Conrad E H, First P N, de Heer W A. Science, 2006, 312: 1191.
[8] Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E. Science, 2006, 313: 951.
[9] de Heer W A, Berger C, Wu X, First P N, Conrad E H, Li X, Li T, Sprinkle M, Hass J, Sadowski M L, Potemski M, Martinez G. Solid State Commun., 2007, 143: 92.
[10] Sutter P W, Flege J I, Sutter E A. Nat. Mater., 2008, 7: 406.
[11] Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, Hong B H. Nature, 2009, 457: 706.
[12] Reina A, Jia X T, Ho J, Nezich D, Son H B, Bulovic V, Dresselhaus M S, Kong J. Nano Lett., 2009, 9: 30.
[13] Hummers W S, Offeman R E. J. Am. Chem. Soc., 1958, 80: 1339.
[14] Eda G, Fanchini G, Chhowalla M. Nat. Nanotechnol., 2008, 3: 270.
[15] Yang X, Dou X, Rouhanipour A, Zhi L, Raeder H J, Muellen K. J. Am. Chem. Soc., 2008, 130: 4216.
[16] Rouhanipour A, Roy M, Feng X, Raeder H J, Muellen K. Angew. Chem. Int. Ed., 2009, 48: 4602.
[17] Lu H, Lipatov A, Ryu S, Kim D J, Lee H, Zhuravlev M Y, Eom C B, Tsymbal E Y, Sinitskii A, Gruverman A. Nat. Commun., 2014, 5: 5518.
[18] Lai Y C, Hsu F C, Chen J Y, He J H, Chang T C, Hsieh Y P, Lin T Y, Yang Y J, Chen Y F. Adv. Mater., 2013, 25: 2733.
[19] Qian M, Pan Y M, Liu F Y, Wang M, Shen H L, He D W, Wang B G, Shi Y, Miao F, Wang X R. Adv. Mater., 2014, 26: 3275.
[20] Kim W H, Park C S, Son J Y. Carbon, 2014, 79: 388.
[21] Jeon H, Park J, Jang W, Kim H, Ahn S, Jeon K J, Seo H, Jeon H. Carbon, 2014, 75: 209.
[22] Lai Y C, Huang Y C, Lin T Y, Wang Y X, Chang C Y, Li Y X, Lin T Y, Ye B W, Hsieh Y P, Su W F, Yang Y J, Chen Y F. Npg Asia Materials, 2014, 6: e87.
[23] Yu W J, Chae S H, Lee S Y, Duong D L, Lee Y H. Adv. Mater., 2011, 23: 1889.
[24] Yao J, Lin J, Dai Y H, Ruan G D, Yan Z, Li L, Zhong L, Natelson D, Tour J M. Nat. Commun., 2012, 3: 1101.
[25] Park W I, Yoon J M, Park M, Lee J, Kim S K, Jeong J W, Kim K, Jeong H Y, Jeon S, No K S, Lee J Y, Jung Y S. Nano Lett., 2012, 12: 1235.
[26] Son J Y, Shin Y H, Kim H, Jang H M. ACS Nano, 2010, 4: 2655.
[27] Chakrabarti B, Roy T, Vogel E M. IEEE Electron Device Letters, 2014, 35: 750.
[28] Lai Y C, Wang Y X, Huang Y C, Lin T Y, Hsieh Y P, Yang Y J, Chen Y F. Adv. Funct. Mater., 2014, 24: 1430.
[29] Ji Y, Lee S, Cho B, Song S, Lee T. ACS Nano, 2011, 5: 5995.
[30] Yang P K, Chang W Y, Teng P Y, Jeng S F, Lin S J, Chiu P W, He J H. Proceedings of the IEEE, 2013, 101: 1732.
[31] Yang Y C, Lee J, Lee S, Liu C H, Zhong Z H, Lu W. Adv. Mater., 2014, 26: 3693.
[32] Xu Y, Liu Z, Zhang X, Wang Y, Tian J, Huang Y, Ma Y, Zhang X, Chen Y. Adv. Mater., 2009, 21: 1275.
[33] Park S, Ruoff R S. Nat. Nanotechnol., 2009, 4: 217.
[34] Sze S M, Ng K K. Physics of Semiconductor Devices. 3rd ed. New Jersey: John Wiley & Sons, 2007. 832.
[35] Wegener H A R, Lincoln A J, Pao H C, O'Connell M R, Oleksiak R E, Lawrence H. The Variable Threshold Transistor, A New Electrically-Alterable, Non-Destructive Read-Only Storage Device (Eds. Wade G). New York: IEEE, 1968. 420.
[36] Kagan C R, Andry P. Thin-Film transistors. New York: Marcel Dekker, 2003. 32.
[37] Chen D, Tang L, Li J. Chem. Soc. Rev., 2010, 39: 3157.
[38] Huang X, Qi X Y, Boey F, Zhang H. Chem. Soc. Rev., 2012, 41: 666.
[39] Meng J L, Shi D X, Zhang G Y. Modern Physics Letters B, 2014, 28: 1430009.
[40] Dedkov Y S, Fonin M, Rudiger U, Laubschat C. Phys. Rev. Lett., 2008, 100: 107602.
[41] He C L, Shi Z W, Zhang L C, Yang W, Yang R, Shi D X, Zhang G Y. ACS Nano, 2012, 6: 4214.
[42] Son D I, Kim T W, Shim J H, Jung J H, Lee D U, Lee J M, Park W, Choi W K. Nano Lett., 2010, 10: 2441.
[43] Son D I, Shim J H, Park D H, Jung J H, Lee J M, Park W, Kim T W, Choi W K. Nanotechnology, 2011, 22: 295203.
[44] Ji Y, Choe M, Cho B, Song S, Yoon J, Ko H C, Lee T. Nanotechnology, 2012, 23: 105202.
[45] Wu C X, Li F S, Guo T L. Appl. Phys. Lett., 2014, 104: 183105.
[46] Wu C X, Li F S, Guo T L, Kim T W. Organic Electronics, 2012, 13: 178.
[47] Li Y, Sinitskii A, Tour J M. Nat. Mater., 2008, 7: 966.
[48] Chung D S, Lee S M, Back J Y, Kwon S K, Kim Y H, Chang S T. ACS Appl. Mater. Interfaces, 2014, 6: 9524.
[49] Han S T, Zhou Y, Yang Q D, Zhou L, Huang L B, Yan Y, Lee C S, Roy V A L. ACS Nano, 2014, 8: 1923.
[50] Hong A J, Song E B, Yu H S, Allen M J, Kim J, Fowler J D, Wassei J K, Park Y, Wang Y, Zou J, Kaner R B, Weiller B H, Wang K L. ACS Nano, 2011, 5: 7812.
[51] Imam S A, Deshpande T, Guermoune A, Siaj M, Szkopek T. Appl. Phys. Lett., 2011, 99: 082109.
[52] Zhang C X, Zhang E X, Fleetwood D M, Alles M L, Schrimpf R D, Song E B, Kim S M, Galatsis K, Wang K L W. IEEE Transactions on Nuclear Science, 2012, 59: 2974.
[53] Jie W J, Hui Y Y, Chan N Y, Zhang Y, Lau S P, Hao J H. J. Phys. Chem. C, 2013, 117: 13747.
[54] Song E B, Lian B, Kim S M, Lee S, Chung T K, Wang M S, Zeng C F, Xu G Y, Wong K, Zhou Y, Rasool H I, Seo D H, Chung H J, Heo J, Seo S, Wang K L. Appl. Phys. Lett., 2011, 99: 042109.
[55] Wang X M, Xie W G, Du J, Wang C L, Zhao N, Xu J B. Adv. Mater., 2012, 24: 2614.
[56] Wu C X, Li F S, Zhang Y G, Guo T L. Appl. Phys. Lett., 2012, 100: 042105.
[57] Kim Y D, Bae M H, Seo J T, Kim Y S, Kim H, Lee J H, Ahn J R, Lee S W, Chun S H, Park Y D. ACS Nano, 2013, 7: 5850.
[58] Kim S M, Song E B, Lee S, Zhu J F, Seo D H, Mecklenburg M, Seo S, Wang K L. ACS Nano, 2012, 6: 7879.
[59] Standley B, Bao W Z, Zhang H, Bruck J, Lau C N, Bockrath M. Nano Lett., 2008, 8: 3345.
[60] Wang H M, Wu Y H, Cong C X, Shang J Z, Yu T. ACS Nano, 2010, 4: 7221.
[61] Di Bartolomeo A, Giubileo F, Santandrea S, Romeo F, Citro R, Schroeder T, Lupina G. Nanotechnology, 2011, 22: 275702.
[62] Echtermeyer T J, Lemme M C, Baus M, Szafranek B N, Geim A K, Kurz H. IEEE Electron Device Letters, 2008, 29: 952.
[63] Zhang H, Bao W Z, Zhao Z, Huang J W, Standley B, Liu G, Wang F L, Kratz P, Jing L, Bockrath M, Lau C N. Nano Lett., 2012, 12: 1772.
[64] Gunlycke D, Areshkin D A, Li J W, Mintmire J W, White C T. Nano Lett., 2007, 7: 3608.
[65] Sinitskii A, Tour J M. ACS Nano, 2009, 3: 2760.
[66] Sinitskii A, Dimiev A, Kosynkin D V, Tour, J M. ACS Nano, 2010, 4: 5405.
[67] Jung I, Son J Y. Carbon, 2012, 50: 3854.
[68] Hong S K, Kim J E, Kim S O, Choi S Y, Cho B J. IEEE Electron Device Letters, 2010, 31: 1005.
[69] Liang J J, Chen Y S, Xu Y F, Liu Z B, Zhang L, Zhao X, Zhang X L, Tian J G, Huang Y, Ma Y F, Li F F. ACS Appl. Mater. Interfaces, 2010, 2: 3310.
[70] Hong S K, Kim J E, Kim S O, Cho B J. J. Appl. Phys., 2011, 110: 044506.
[71] Yi M D, Zhao L T, Fan Q L, Xia X H, Ai W, Xie L H, Liu X M, Shi N E, Wang W J, Wang Y P, Huang W J. Appl. Phys., 2011, 110: 063709.
[72] Wang L H, Yang W, Sun Q Q, Zhou P, Lu H L, Ding S J, Zhang D W. Appl. Phys. Lett., 2012, 100: 063509.
[73] Jilani S M, Gamot T D, Banerji P, Chakraborty S. Carbon, 2013, 64: 187.
[74] Kajen R S, Chandrasekhar N, Pey K L, Vijila C, Jaiswal M, Saravanan S, Ng A M H, Wong C P, Loh K P. ECS Solid State Letters, 2013, 2: M17.
[75] Khurana G, Misra P, Katiyar R S. J. Appl. Phys., 2013, 114: 124508.
[76] Nho H W, Kim J Y, Wang J, Shin H J, Choi S Y, Yoon T H. Journal of Synchrotron Radiation, 2014, 21: 170.
[77] He C L, Zhuge F, Zhou X F, Li M, Zhou G C, Liu Y W, Wang J Z, Chen B, Su W J, Liu Z P, Wu Y H, Cui P, Li R W. Appl. Phys. Lett., 2009, 95: 232101.
[78] Zhuge F, Hu B L, He C L, Zhou X F, Liu Z P, Li R W. Carbon, 2011, 49: 3796.
[79] Jeong H Y, Kim J Y, Kim J W, Hwang J O, Kim J E, Lee J Y, Yoon T H, Cho B J, Kim S O, Ruoff R S, Choi S Y. Nano Lett., 2010, 10: 4381.
[80] Kim T W, Gao Y, Acton O, Yip H L, Ma H, Chen H Z, Jen, A K Y. Appl. Phys. Lett., 2010, 97: 023310.
[81] Vasu K S, Sampath S, Sood A K. Solid State Commun., 2011, 151: 1084.
[82] Ho N T, Senthilkumar V, Kim Y S. Solid State Electron., 2014, 94: 61.
[83] Huang X, Zheng B, Liu Z D, Tan C L, Liu J Q, Chen B, Li H, Chen J Z, Zhang X, Fan Z X, Zhang W N, Guo Z, Huo F W, Yang Y H, Xie L H, Huang W, Zhang H. ACS Nano, 2014, 8: 8695.
[84] Rani A, Song J M, Lee M J, Lee J S. Appl. Phys. Lett., 2012, 101: 233308.
[85] Du Z Z, Li W, Ai W, Tai Q, Xie L H, Cao Y, Liu J Q, Yi M D, Ling H F, Li Z H, Huang W. RSC Adv., 2013, 3: 25788.
[86] Mishra A, Janardanan A, Khare M, Kalita H, Kottantharayil A. IEEE Electron Device Letters, 2013, 34: 1136.
[87] Kim C, Song J M, Lee J S, Lee M J. Nanotechnology, 2014, 25: 014016.
[88] Wang Z X, Eigler S, Halik M. Appl. Phys. Lett., 2014, 104: 243502.
[89] Seo S, Yoon Y, Lee J, Park Y, Lee H. ACS Nano, 2013, 7: 3607.
[90] Zhuang X D, Chen Y, Liu G, Li P P, Zhu C X, Kang E T, Neoh K G, Zhang B, Zhu J H, Li Y X. Adv. Mater., 2010, 22: 1731.
[91] Zhang B, Liu Y L, Chen Y, Neoh K G, Li Y X, Zhu C X, Tok E S, Kang E T. Chem. Eur. J., 2011, 17: 10304.
[92] Zhang B, Chen Y, Ren Y J, Xu L Q, Liu G, Kang E T, Wang C, Zhu C X, Neoh K G. Chem. Eur. J., 2013, 19: 6265.
[93] Zhuang X D, Chen Y, Wang L X, Neoh K G, Kang E T, Wang C. Polym. Chem., 2014, 5: 2010.
[94] Wu C X, Li F S, Zhang Y A, Guo T L, Chen T. Appl. Phys. Lett., 2011, 99: 042108.
[95] Zhang B, Liu G, Chen Y, Zeng L J, Zhu C X, Neoh K G, Wang C, Kang E T. Chem. Eur. J. 2011, 17: 13646.
[96] Zhang B, Chen Y, Xu L Q, Zeng L J, He Y, Kang E T, Zhang J J. J. Polym. Sci. Part A: Pol. Chem., 2011, 49: 2043.
[97] Liu G, Zhuang X D, Chen Y, Zhang B, Zhu J H, Zhu C X, Neoh K G, Kang E T. Appl. Phys. Lett., 2009, 95: 253301.
[98] Li G L, Liu G, Li M, Wan D, Neoh K G, Kang E T. J. Phys. Chem. C, 2010, 114: 12742.
[99] Jin C, Lee J, Lee E, Hwang E, Lee H. Chem. Commun., 2012, 48: 4235.
[100] Bhunia P, Hwang E, Min M, Lee J, Seo S, Some S, Lee H. Chem. Commun., 2012, 48: 913.
[101] Cui P, Seo S, Lee J, Wang L, Lee E, Min M, Lee H. ACS Nano, 2011, 5(9): 6826.
[102] Lai Y C, Wang D Y, Huang I S, Chen Y T, Hsu Y H, Lin T Y, Meng H F, Chang T C, Yang Y J, Chen C C, Hsu F C, Chen Y F. J. Mater. Chem. C, 2013, 1: 552.
[103] Chou Y H, Chiu Y C, Chen W C. Chem. Commun., 2014, 50: 3217.
[104] Wu C X, Li F S, Guo T L. Vacuum, 2014, 101: 246.
[105] Zhang Q, Pan J, Yi X, Li L, Shang S M. Organic Electronics, 2012, 13: 1289.
[106] Mamo M A, Sustaita A O, Coville N J, Hummelgen I A. Organic Electronics, 2013, 14: 175.
[107] Velusamy D B, Hwang S K, Kim R H, Song G, Cho S H, Bae I, Park C. J. Mater. Chem., 2012, 22: 25183.
[108] Yu A D, Liu C L, Chen W C. Chem. Commun., 2012, 48: 383.
[109] Wang S A, Manga K K, Zhao M, Bao Q L, Loh K P. Small, 2011, 7: 2372.
[110] Hu B L, Qu R G, Chen C, Zhu G F, Zhu X J, Peng S S, Chen X X, Pan L, Wu Y Z, Zheng W G, Yan Q, Lu J, Li R W. J. Mater. Chem., 2012, 22: 16422.
[111] Kou L J, Li F S, Chen W, Guo T L. Organic Electronics, 2013, 14: 1447.
[112] Mihalache I, Radoi A, Munteanu C, Kusko M, Kusko C. Organic Electronics, 2014, 15: 216.
[113] Obreja A C, Cristea D, Mihalache I, Radoi A, Gavrila R, Comanescu F, Kusko C. Appl. Phys. Lett., 2014, 105: 083303.
[114] Bertolazzi S, Krasnozhon D, Kis A. ACS Nano, 2013, 7: 3246.
[115] Choi M S, Lee G H, Yu Y J, Lee D Y, Lee S H, Kim P, Hone J, Yoo W J. Nat. Commun., 2013, 4: 1624.
[116] Roy K, Padmanabhan M, Goswami S, Sai T P, Ramalingam G, Raghavan S, Ghosh A. Nat. Nanotechnol., 2013, 8: 826.
[117] Zhan N, Olmedo M, Wang G P, Liu J L. Appl. Phys. Lett., 2011, 99: 113112.
[118] Kwon S, Seo H, Lee H, Jeon K J, Park J Y. Appl. Phys. Lett., 2012, 100: 123101.
[119] Lee S, Song E B, Kim S M, Lee Y, Seo D H, Seo S, Wang K L. Appl. Phys. Lett., 2012, 101: 023109.
[120] Myung S, Park J, Lee H, Kim K S, Hong S. Adv. Mater., 2010, 22: 2045.
[121] Han S T, Zhou Y, Wang C D, He L F, Zhang W J, Roy V A L. Adv. Mater., 2013, 25: 872.
[122] Yin Z Y, Zeng Z Y, Liu J Q, He Q Y, Chen P, Zhang H. Small, 2013, 9: 727.
[123] Van't Erve O M J, Friedman A L, Cobas E, Li C H, Robinson J T, Jonker B T. Nat. Nanotechnol., 2012, 7: 737.
[124] Kim I, Siddik M, Shin J, Biju K P, Jung S, Hwang H. Appl. Phys. Lett., 2011, 99: 042101.
[125] Yin Z Y, Sun S Y, Salim T, Wu S X, Huang X A, He Q Y, Lam Y M, Zhang H. ACS Nano, 2010, 4: 5263.
[126] Liu J Q, Lin Z Q, Liu T J, Yin Z Y, Zhou X Z, Chen S F, Xie L H, Boey F, Zhang H, Huang W. Small, 2010, 6: 1536.
[127] Liu J Q, Yin Z Y, Cao X H, Zhao F, Lin A P, Xie L H, Fan Q L, Boey F, Zhang H, Huang W. ACS Nano, 2010, 4: 3987.
[128] Liu J Q, Zeng Z Y, Cao X H, Lu G, Wang L H, Fan Q L, Huang W, Zhang H. Small, 2012, 8: 3517.
[129] Tian H, Chen H Y, Ren T L, Li C, Xue Q T, Mohammad M A, Wu C, Yang Y, Wong H S P. Nano Lett., 2014, 14: 3214.
[1] Yong Zhang, Hui Zhang, Yi Zhang, Lei Gao, Jianchen Lu, Jinming Cai. Surface Synthesis of Heteroatoms-Doped Graphene Nanoribbons [J]. Progress in Chemistry, 2023, 35(1): 105-118.
[2] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[3] Hongji Jiang, Meili Wang, Zhiwei Lu, Shanghui Ye, Xiaochen Dong. Graphene-Based Artificial Intelligence Flexible Sensors [J]. Progress in Chemistry, 2022, 34(5): 1166-1180.
[4] Hui Zhang, Wei Xiong, Jianchen Lu, Jinming Cai. Magnetic Properties and Engineering of Nanographene in Ultra-High Vacuum [J]. Progress in Chemistry, 2022, 34(3): 557-567.
[5] Xiaoxiao Xiang, Xiaowen Tian, Huie Liu, Shuang Chen, Yanan Zhu, Yuqin Bo. Controlled Preparation of Graphene-Based Aerogel Beads [J]. Progress in Chemistry, 2021, 33(7): 1092-1099.
[6] Lei Wu, Lihui Liu, Shufen Chen. Flexible Organic Light-Emitting Diodes Using Carbon-Based Transparent Electrodes [J]. Progress in Chemistry, 2021, 33(5): 802-817.
[7] Binbin Zhu, Xiaohui Zheng, Guang Yang, Xu Zeng, Wei Qiu, Bin Xu. Mechanical Property Regulation of Graphene Oxide Separation Membranes [J]. Progress in Chemistry, 2021, 33(4): 670-677.
[8] Suye Lv, Liang Zou, Shouliang Guan, Hongbian Li. Application of Graphene in Neural Activity Recording [J]. Progress in Chemistry, 2021, 33(4): 568-580.
[9] Xiansheng Luo, Hanlin Deng, Jiangying Zhao, Zhihua Li, Chunpeng Chai, Muhua Huang. Synthesis and Application of Holey Nitrogen-Doped Graphene Material(C2N) [J]. Progress in Chemistry, 2021, 33(3): 355-367.
[10] Jianlei Qi, Qinqin Xu, Jianfei Sun, Dan Zhou, Jianzhong Yin. Synthesis, Characterization and Analysis of Graphene-Supported Single-Atom Catalysts [J]. Progress in Chemistry, 2020, 32(5): 505-518.
[11] Le Gong, Rong Yang, Rui Liu, Liping Chen, Yinglin Yan, Zufei Feng. Application of Graphene Quantum Dots in Energy Storage Devices [J]. Progress in Chemistry, 2019, 31(7): 1020-1030.
[12] Jie Liu, Yuan Zeng, Jun Zhang, Haijun Zhang, Jianghao Liu. Preparation, Structures and Properties of Three-Dimensional Graphene-Based Materials [J]. Progress in Chemistry, 2019, 31(5): 667-680.
[13] Aobo Geng, Qiang Zhong, Changtong Mei, Linjie Wang, Lijie Xu, Lu Gan. Applications of Wet-Functionalized Graphene in Rubber Composites [J]. Progress in Chemistry, 2019, 31(5): 738-751.
[14] Xiaojuan Wang, Zhenzhen Liu, Qi Chen, Xiaoqiang Wang, Fang Huang. Interactions between Graphene Materials and Proteins [J]. Progress in Chemistry, 2019, 31(2/3): 236-244.
[15] Changyuan Bao, Jiajun Han*, Jinning Cheng, Ruitao Zhang. Electrode Materials Blended with Graphene/Polyaniline for Supercapacitor [J]. Progress in Chemistry, 2018, 30(9): 1349-1363.