中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (10): 1481-1499 DOI: 10.7536/PC150436 Previous Articles   Next Articles

• Review and comments •

Oxygen Exchange Materials Used in Two-Steps Thermochemical Water Splitting for Hydrogen Production

Zhai Kang1,3, Li Kongzhai1,2, Zhu Xing1,2*, Wei Yonggang1,2   

  1. 1. State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China;
    2. Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 65009;
    3. Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 51204083, 51174105, 51374004, 51206071), the Applied Basic Research Program of Yunnan Province (No. 2012FD016, 2014FB123), the Young and Middle-Aged Academic and the Candidate Talents Training Fund of Yunnan Province (No. 2012HB009, 2014HB006).
PDF ( 1482 ) Cited
Export

EndNote

Ris

BibTeX

Oxygen exchange material is a kind of oxygen storage material which can release oxygen in a inert atmosphere and restore oxygen in a weak oxidation atmosphere. Thermochemical water splitting (TWS) technology is a promising process for the conversion of solar energy to hydrogen, which strongly replies on the development of the oxygen exchange materials (OEM). In a TWS process, the OEM could release its lattice oxygen via thermal decomposition or by reducing gas heated by solar energy, and then it would be reoxidized with water vapor to produce pure hydrogen. Some suitable OEMs can also be prepared to oxygen transport membranes (OTM), which enable the simultaneous occurence of the oxygen releasing and oxgyen restoring on each side of the materials, producing hydrogen successively. This review mainly introduce the recent developments on the OEMs, including Fe-based oxides, perovskite oxides, Ni-based oxides, Ce-based oxides, OTM. The main challenges in OEM, such as the provement of activity and cyclic stability of Fe-based oxides and perovskite oxides for water splitting, and realization of highly-efficient OTM reactor are discussed. Finally, future development trends in this area are prospected based on our researches.

Contents
1 Introduction
2 Redox oxygen exchange materials (Redox-OEM)
2.1 Thermochemical reduction system
2.2 CH4 reduction system
2.3 Syngas/CO reduction system
2.4 H2 reduction system
3 Oxygen Transport Membranes (OTM-OEM)
3.1 CO/H2 reduction system
3.2 CH4 reduction system
3.3 Other systems
4 Conclusion and outlook

CLC Number: 

[1] Xiao R, Zhang S, Peng S, Shen D, Liu K. Int. J. Hydrogen Energy, 2014, 39 (35): 19955.
[2] Roeb M, Sattler C. Science, 2013, 341 (6145): 470.
[3] Muhich C L, Evanko B W, Weston K C, Lichty P, Liang X, Martinek J, Musgrave C B, Weimer A W. Science, 2013, 341 (6145): 540.
[4] Hajjaji N, Baccar I, Pons M N. Renew. Energ., 2014, 71: 368.
[5] Cipriani G, Di Dio V, Genduso F, La Cascia D, Liga R, Miceli R, Ricco Galluzzo G. Int. J. Hydrogen Energy, 2014, 39 (16): 8482.
[6] 吴川(Wu C), 张华民(Zhang H M), 衣宝廉(Yi B L). 化学进展(Progress in Chemistry), 2005, 17 (3): 423.
[7] Holladay J D, Hu J, King D L, Wang Y. Catal. Today, 2009, 139 (4): 244.
[8] Satyapal S, Petrovic J, Read C, Thomas G, Ordaz G. Catal. Today, 2007, 120 (3/4): 246.
[9] Fuel Cells Bulletin, 2009, 5: 7.
[10] Fuel Cells Bulletin, 2007, 6: 2.
[11] Haraldsson K, Folkesson A, Alvfors P. J. Power Sources, 2005, 145 (2): 620.
[12] Saxe M, Folkesson A, Alvfors P. Int. J. Hydrogen Energy, 2007, 32 (17): 4295.
[13] Sun K, Pan X, Li Z, Ma J. Int. J. Hydrogen Energy, 2014, 39 (35): 20411.
[14] Demirci U B, Miele P. J. Clean. Prod., 2013, 52: 1.
[15] Acar C, Dincer I. Int. J. Hydrogen Energy, 2014, 39 (1): 1.
[16] Dincer I. Int. J. Hydrogen Energy, 2012, 37 (2): 1954.
[17] Chueh W C, Falter C, Abbott M, Scipio D, Furler P, Haile S M, Steinfeld A. Science, 2010, 330 (6012): 1797.
[18] Bi D? áková O, Straka P. Int. J. Hydrogen Energy, 2012, 37 (16): 11563.
[19] Wang Z, Roberts R R, Naterer G F, Gabriel K S. Int. J. Hydrogen Energy, 2012, 37 (21): 16287.
[20] Funk J E, Reinstrom R M. Ind. Eng. Chem. Process Design and Development, 1966, 5 (3): 336.
[21] 张平(Zhang P). 化学进展(Progress in Chemistry), 2005, 17 (4): 643.
[22] Scheffe J R, Steinfeld A. Mater. Today, 2014, 17 (7): 341.
[23] Gupta S, Mahapatra M K, Singh P. Mater. Sci. Eng. R, 2015, 90: 1.
[24] Kodama T, Gokon N. Chem. Rev., 2007, 107 (10): 4048.
[25] Agrafiotis C, von Storch H, Roeb M, Sattler C. Renew. Sust. Energ. Rev., 2014, 29: 656.
[26] LeValley T L, Richard A R, Fan M. Int. J. Hydrogen Energy, 2014, 39 (30): 16983.
[27] Takenaka S, Yamada C, Kaburagi T, Otsuka K. Storage and Supply of Hydrogen Mediated by Iron Oxide: Modification of Iron Oxides. Amsterdam: Elsevier, 2000. 795.
[28] Steinfeld A. Sol. Energy, 2005, 78 (5): 603.
[29] 代小平(Dai X P), 余长春(Yu C C). 化学进展(Progress in Chemistry), 2009, (Z2): 1626.
[30] 祝星(Zhu X), 王华(Wang H), 魏永刚(Wei Y G), 李孔斋(Li K Z), 晏冬霞. 化学进展(Progress in Chemistry), 2010, 22 (5): 1010.
[31] Steinfeld A, Palumbo R. Solar Thermochemical Process Technology (Eds. Meyers R A). New York: Academic Press, 2003. 237.
[32] Hirsch D, Steinfeld A. Chem. Eng. Sci., 2004, 59 (24): 5771.
[33] Wegner K, Ly H C, Weiss R J, Pratsinis S E, Steinfeld A. Int. J. Hydrogen Energy, 2006, 31 (1): 55.
[34] 张磊(Zhang L), 张平(Zhang P), 王建晨(Wang J C). 太阳能学报(Acta Energiae Solaris Sinica ), 2006, 27 (12): 1263.
[35] 张文强(Zhang W Q), 于波(Yu B), 张平(Zhang P), 陈靖(Chen J), 徐景明(Xu J M). 化学进展(Progress in Chemistry), 2006, 18 (6): 832.
[36] Gokon N, Kondo K, Hatamachi T, Sato M, Kodama T. Int. J. Hydrogen Energy, 2013, 38 (12): 4935.
[37] Kaneko H, Hosokawa Y, Kojima N, Gokon N, Hasegawa N, Kitamura M, Tamaura Y. Energy, 2001, 26 (10): 919.
[38] Kaneko H, Hosokawa Y, Gokon N, Kojima N, Hasegawa N, Kitamura M, Tamaura Y. J. Phys. Chem. Solids, 2001, 62 (7): 1341.
[39] Alvani C, Ennas G, La Barbera A, Marongiu G, Padella F, Varsano F. Int. J. Hydrogen Energy, 2005, 30 (13/14): 1407.
[40] Seralessandri L, Bellusci M, Padella F, Santini A, Varsano F. Int. J. Hydrogen Energy, 2009, 34 (10): 4546.
[41] Koepf E, Advani S G, Steinfeld A, Prasad A K, Int. J. Hydrogen Energy, 2012, 37 (22): 16871.
[42] Steinfeld A. Int. J. Hydrogen Energy, 2002, 27 (6): 611.
[43] Perkins C, Lichty P R, Weimer A W. Int. J. Hydrogen Energy, 2008, 33 (2): 499.
[44] Loutzenhiser P G, Meier A, Steinfeld A. Materials, 2010, 3 (11): 4922.
[45] Abanades S, Charvin P, Lemont F, Flamant G. Int. J. Hydrogen Energy, 2008, 33 (21): 6021.
[46] Nakamura T. Sol. Energy, 1977, 19 (5): 467.
[47] Coker E N, Ambrosini A, Rodriguez M A, Miller J E. J. Mater. Chem., 2011, 21 (29): 10767.
[48] Charvin P, Abanades S, Flamant G, Lemort F. Energy, 2007, 32 (7): 1124.
[49] Kodama T, Nakamuro Y, Mizuno T. J. Sol. Energy Engineering, 2004, 128 (1): 3.
[50] Gokon N, Murayama H, Umeda J, Hatamachi T, Kodama T. Int. J. Hydrogen Energy, 2009, 34 (3): 1208.
[51] Kodama T, Kondoh Y, Yamamoto R, Andou H, Satou N. Sol. Energy, 2005, 78 (5): 623.
[52] Scheffe J R, McDaniel A H, Allendorf M D, Weimer A W. Energ. Environ. Sci., 2013, 6 (3): 963.
[53] Scheffe J R, Li J, Weimer A W. Int. J. Hydrogen Energy, 2010, 35 (8): 3333.
[54] Arifin D, Aston V J, Liang X, McDaniel A H, Weimer A W. Energ. Environ. Sci., 2012, 5 (11): 9438.
[55] Chueh W C, Haile S M. Philos. Trans. A Math. Phys. Eng. Sci., 2010, 368 (1923): 3269.
[56] Furler P, Scheffe J, Gorbar M, Moes L, Vogt U, Steinfeld A. Solar thermochemical CO2 splitting utilizing a reticulated porous ceria redox system. New Orleans, LA: Am. Chem. Soc., 2013. 245.
[57] Hao Y, Yang C K, Haile S M. Phys. Chem. Chem. Phys., 2013, 15 (40): 17084.
[58] Abanades S, Legal A, Cordier A, Peraudeau G, Flamant G, Julbe A. J. Mater. Sci., 2010, 45 (15): 4163.
[59] Le Gal A, Abanades S, Bion N, Le Mercier T, Harlé V. Energ. Fuel., 2013, 27 (10): 6068.
[60] Meng Q L, Lee C, Ishihara T, Kaneko H, Tamaura Y. Int. J. Hydrogen Energy, 2011, 36 (21): 13435.
[61] McDaniel A H, Miller E C, Arifin D, Ambrosini A, Coker E N, O'Hayre R, Chueh W C, Tong J. Energ. Environ. Sci., 2013, 6 (8): 2424.
[62] Scheffe J R, Weibel D, Steinfeld A. Energ. Fuel., 2013, 27 (8): 4250.
[63] El Naggar A M A, Gobara H M, Nassar I M. Renew. Sust. Energ. Rev., 2015, 41: 1205.
[64] Demont A, Abanades S, Beche E. J. Phys. Chem. C, 2014, 118 (24): 12682.
[65] McDaniel A H, Ambrosini A, Coker E N, Miller J E, Chueh W C, O'Hayre R, Tong J. Nonstoichiometric Perovskite Oxides for Solar Thermochemical H2 and CO Production. Amsterdam: Elsevier, 2014. 2009.
[66] Miller J E, Ambrosini A, Coker E N, Allendorf M D, McDaniel A H. Advancing Oxide Materials for Thermochemical Production of Solar Fuels. Amsterdam: Elsevier, 2014.2019.
[67] Wei B, Fakhrai R, Saadatfar B. Int. J. Hydrogen Energy, 2014, 39 (23): 12353.
[68] 李孔斋(Li K Z), 王华(Wang H), 魏永刚(Wei Y G), 敖先权(Ao X Q), 刘明春(Liu M C). 化学进展(Progress in Chemistry), 2008, 20 (9): 1306.
[69] Li K, Wang H, Wei Y, Liu M. J. Rare Earth., 2008, 26 (5): 705.
[70] 李然家(Li R J), 余长春(Yu C C), 代小平(Dai X P), 沈师孔(Shen S K). 催化学报(Chinese J. Catal.), 2002, 23 (4): 381.
[71] 孙小燕(Sun X Y), 向文国(Xiang W G), 田文栋(Tian W D), 徐祥(Xu X) 徐燕骥(Xu Y J), 肖云汉(Xiao Y H). 燃烧科学与技术(Journal of Combustion Science and Technology), 2011, 17 (6): 534.
[72] Steinfeld A, Spiewak I. Energ. Convers. Manage., 1998, 39 (15): 1513.
[73] Werder M, Steinfeld A. Energy, 2000, 25 (5): 395.
[74] Otsuka K, Wang Y, Sunada E, Yamanaka I. J. Catal., 1998, 175 (2): 152.
[75] Otsuka K, Wang Y, Nakamura M. Appl. Catal. A. Gen., 1999, 183 (2): 317.
[76] Cha K S, Kim H S, Yoo B K, Lee Y S, Kang K S, Park C S, Kim Y H. Int. J. Hydrogen Energy, 2009, 34 (4): 1801.
[77] Solunke R D, Veser G t. Ind. Eng. Chem. Res., 2010, 49 (21): 11037.
[78] Dueso C, Ortiz M, Abad A, García Labiano F, de Diego L F, Gayán P, Adánez J. Chem. Eng. J., 2012, 188: 142.
[79] Zhang X, Jin H. Appl. Energ., 2013, 112: 800.
[80] Zhang X, Li S, Hong H, Jin H. Energ. Convers. Manage., 2014, 85: 701.
[81] Benrabaa R, Boukhlouf H, Löfberg A, Rubbens A, Vannier R N, Bordes Richard E, Barama A. J. Nat.Gas Chem., 2012, 21 (5): 595.
[82] Benrabaa R, Löfberg A, Rubbens A, Bordes Richard E, Vannier R N, Barama A. Catal. Today, 2013, 203: 188.
[83] Xiang W, Wang S, Di T. Energ, Fuel., 2008, 22 (2): 961.
[84] Chen S, Shi Q, Xue Z, Sun X, Xiang W. Int. J. Hydrogen Energy, 2011, 36 (15): 8915.
[85] Dufour J, Serrano D P, Gálvez J L, González A, Soria E, Fierro J L G. Int. J. Hydrogen Energy, 2012, 37 (2): 1173.
[86] Susmozas A, Iribarren D, Dufour J. Int. J. Hydrogen Energy, 2013, 38 (24): 9961.
[87] Malonzo C D, De Smith R M, Rudisill S G, Petkovich N D, Davidson J H, Stein A. J. Phys. Chem. C, 2014, 118 (45): 26172.
[88] Jeong H H, Kwak J H, Han G Y, Yoon K J. Int. J. Hydrogen Energy, 2011, 36 (23): 15221.
[89] Sim A, Cant N W, Trimm D L. Int. J. Hydrogen Energy, 2010, 35 (17): 8953.
[90] Zhu X, Wang H, Wei Y, Li K, Cheng X. Mendeleev Commun., 2011, 21 (4): 221.
[91] Zheng Y, Wei Y, Li K, Zhu X, Wang H, Wang Y. Int. J. Hydrogen Energy, 2014, 39 (25): 13361.
[92] Zheng Y, Zhu X, Wang H, Li K, Wang Y, Wei Y. J. Rare Earth., 2014, 32 (9): 842.
[93] Zhu X, Wang H, Wei Y, Li K, Cheng X. J. Rare Earth., 2010, 28 (6): 907.
[94] Zhu X, Wei Y, Wang H, Li K. Int. J. Hydrogen Energy, 2013, 38 (11): 4492.
[95] Zhu X, Du Y, Wang H, Wei Y, Li K, Sun L. J. Rare Earth., 2014, 32 (9): 824.
[96] Zhu X, Li K, Wei Y, Wang H, Sun L. Energ. Fuel., 2014, 28 (2): 754.
[97] Galvita V V, Poelman H, Bliznuk V, Detavernier C, Marin G B. Ind. Eng. Chem. Res., 2013, 52 (25): 8416.
[98] Yamaguchi D, Tang L, Wong L, Burke N, Trimm D, Nguyen K, Chiang K. Int. J. Hydrogen Energy, 2011, 36 (11): 6646.
[99] 李孔斋(Li K Z),王华(Wang H),魏永刚(Wei Y G),刘明春(Liu M C).燃料化学学报(Journal of Fuel Chemistry and Technology ), 2008, 36 (1): 83.
[100] Wei Y, Wang H, Li K, Zhu X, Du Y. J. Rare Earth., 2010, 28, Supplement 1: 357.
[101] Li K, Wang H, Wei Y, Yan D. Appl. Catal. B. Environ., 2010, 97 (3/4): 361.
[102] Li K, Wang H, Wei Y, Yan D. Chem. Eng. J., 2011, 173 (2): 574.
[103] Cheng X, Wang H, Wei Y, Li K, Zhu X. J. Rare Earth., 2010, 28, S1: 316.
[104] Evdou A, Zaspalis V, Nalbandian L. Int. J. Hydrogen Energy, 2008, 33 (20): 5554.
[105] Nalbandian L, Evdou A, Zaspalis V. Int. J. Hydrogen Energy, 2009, 34 (17): 7162.
[106] Nalbandian L, Evdou A, Zaspalis V. Int. J. Hydrogen Energy, 2011, 36 (11): 6657.
[107] 李然家(Li R J),余长春(Yu C C), 代小平(Dai X P), 沈师孔(Shen S K). 催化学报(Chinese J. Catal.), 2002, 23 (6): 549.
[108] 代小平(Dai X P), 余长春(Yu C C), 吴琼(Wu Q). 催化学报(Chinese J. Catal.), 2008, 29 (10): 954.
[109] Dai X, Yu C, Li R, Wu Q, Hao Z. J. Rare Earth., 2008, 26 (1): 76.
[110] Dai X, Yu C, Wu Q. Chinese J. Catal., 2008, 29 (10): 954.
[111] Dai X, Yu C, Li R, Wu Q, Shi K, Hao Z. J. Rare Earth., 2008, 26 (3): 341.
[112] Dai X, Yu C, Wu Q. J. Nat. Gas Chem., 2008, 17 (4): 415.
[113] 代小平(Dai X P), 余长春(Yu C C). 催化学报(Chinese J. Catal.), 2011, 32 (8): 1411.
[114] He F, Li X, Zhao K, Huang Z, Wei G, Li H. Fuel, 2013, 108: 465.
[115] Zhao K, He F, Huang Z, Zheng A, Li H, Zhao Z. Chinese J. Catal., 2014, 35 (7): 1196.
[116] He F, Zhao K, Huang Z, Li X, Wei G, Li H. Chinese J. Catal., 2013, 34 (6): 1242.
[117] Zhao K, He F, Huang Z, Zheng A, Li H, Zhao Z. Int. J. Hydrogen Energy, 2014, 39 (7): 3243.
[118] Galvita V, Sundmacher K. Chem. Eng. J., 2007, 134 (1/3): 168.
[119] Galvita V, Schröder T, Munder B, Sundmacher K. Int. J. Hydrogen Energy, 2008, 33 (4): 1354.
[120] Heidebrecht P, Sundmacher K. Chem. Eng. Sci., 2009, 64 (23): 5057.
[121] Bohn C D, Cleeton J P, Müller C R, Chuang S Y, Scott S A, Dennis J S. Energ. Fuel., 2010, 24 (7): 4025.
[122] Cormos C C. Int. J. Hydrogen Energy, 2010, 35 (6): 2278.
[123] Scheffe J R, Allendorf M D, Coker E N, Jacobs B W, McDaniel A H, Weimer A W. Chem. Mater., 2011, 23 (8): 2030.
[124] Xiang W, Chen S, Xue Z, Sun X. Int. J. Hydrogen Energy, 2010, 35 (16): 8580.
[125] Aston V J, Evanko B W, Weimer A W. Int. J. Hydrogen Energy, 2013, 38 (22): 9085.
[126] Otsuka K, Yamada C, Kaburagi T, Takenaka S. Int. J. Hydrogen Energy, 2003, 28 (3): 335.
[127] Otsuka K, Kaburagi T, Yamada C, Takenaka S. J. Power Sources, 2003, 122 (2): 111.
[128] Hui W, Takenaka S, Otsuka K. Int. J. Hydrogen Energy, 2006, 31 (12): 1732.
[129] Lee D, Cha K, Lee Y, Kang K, Park C, Kim Y. Int. J. Hydrogen Energy, 2009, 34 (3): 1417.
[130] Kim H S, Cha K S, Yoo B K, Ryu T G, Lee Y S, Park C S, Kim Y H. J. Ind. Eng. Chem., 2010, 16 (1): 81.
[131] Zhu X, Sun L, Zheng Y, Wang H, Wei Y, Li K. Int. J. Hydrogen Energy, 2014, 39 (25): 13381.
[132] Liu X, Wang H. J. Solid State Chem., 2010, 183 (5): 1075.
[133] Wen F, Wang H, Tang Z. Thermochim. Acta, 2011, 520 (1/2): 55.
[134] Balachandran U, Lee T H, Wang S, Dorris S E. Int. J. Hydrogen Energy, 2004, 29 (3): 291.
[135] Lee T H, Park C Y, Dorris S E, Balachandran U. ECS Transactions, 2008, 13: 379.
[136] 程云飞(Cheng Y F), 赵海雷(Zhao H L), 王治峰(Wang Z F), 滕德强(Teng D Q). 稀有金属材料与工程(Rare Metal Materials and Engineering ), 2008, 37: 2069.
[137] Waller D, Lane J A, Kilner J A, Steele B C H. Solid State Ionics, 1996, 86/88, Part 2: 767.
[138] Shao Z, Haile S M. Nature, 2004, 431 (7005): 170.
[139] Li W, Zhu X, Cao Z, Wang W, Yang W. Int. J. Hydrogen Energy, 2015, 40 (8): 3452.
[140] Park C Y, Lee T H, Dorris S E, Balachandran U. Int. J. Hydrogen Energy, 2010, 35 (9): 4103.
[141] Park C Y, Lee T H, Dorris S E, Lu Y, Balachandran U. Int. J. Hydrogen Energy, 2011, 36 (15): 9345.
[142] Park C Y, Lee T H, Dorris S E, Balachandran U. Int. J. Hydrogen Energy, 2013, 38 (15): 6450.
[143] Jeon S Y, Im H N, Singh B, Hwang J H, Song S J. Ceram. Int., 2013, 39 (4): 3893.
[144] Park C Y, Lee T H, Dorris S E, Balachandran U. ECS Transactions, 2008, 13: 393.
[145] Wang H, Gopalan S, Pal U B. Electrochim. Acta, 2011, 56 (20): 6989.
[146] Kilgus M, Wang H, Werth S, Caro J, Schiestel T. Desalination, 2006, 199 (1/3): 355.
[147] Caro J, Schiestel T, Werth S, Wang H, Kleinert A, Kölsch P. Desalination, 2006, 199 (1/3): 415.
[148] Jiang H, Wang H, Werth S, Schiestel T, Caro J. Angew. Chem. Int. Edit., 2008, 47 (48): 9341.
[149] Wei Y, Tang J, Zhou L, Li Z, Wang H. Chem. Eng. J., 2012, 183: 473.
[150] Evdou A, Zaspalis V, Nalbandian L. Fuel,2010, 89 (6): 1265.
[151] Franca R V, Thursfield A, Metcalfe I S. J. Membrane Sci., 2012, 389: 173.
[152] Liu J, Cheng H, Jiang B, Lu X, Ding W. Int. J. Hydrogen Energy, 2013, 38 (25): 11090.
[153] Jiang B, Cheng H, Luo L, Lu X, Zhang N, Liu J. J. Energ. Chem., 2014, 23 (2): 164.
[154] Cheng H, Yao W, Lu X, Zhou Z, Li C, Liu J. Fuel Process. Technol., 2015, 131: 36.
[155] Cao Z, Jiang H, Luo H, Baumann S, Meulenberg W A, Voss H, Caro J. Catal. Today, 2012, 193 (1): 2.
[156] Jiang H, Cao Z, Schirrmeister S, Schiestel T, Caro J. Angew. Chem. Int. Edit., 2010, 49 (33): 5656.
[157] Zhu N, Dong X, Liu Z, Zhang G, Jin W, Xu N. Chem. Commun., 2012, 48 (57): 7137.
[158] Thursfield A, Murugan A, Franca R, Metcalfe I S. Energ. Environ. Sci., 2012, 5 (6): 7421.
[159] 王振(Wang Z), 于波(Yu B), 张文强(Zhang W Q), 陈靖(Chen J), 徐景明(Xu J M). 化学进展(Progress in Chemistry), 2013, (07): 1229.
[160] Yun K S, Yoo C Y, Yoon S G, Yu J H, Joo J H. J. Membrane Sci., 2015, 486: 222.
[161] Suntivich J, May K J, Gasteiger H A, Goodenough J B, Shao-Horn Y. Science, 2011, 334 (6061): 1383.
[1] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[2] Chao Ji, Tuo Li, Xiaofeng Zou, Lu Zhang, Chunjun Liang. Two-Dimensional Perovskite Photovoltaic Devices [J]. Progress in Chemistry, 2022, 34(9): 2063-2080.
[3] Qianqian Fan, Lu Wen, Jianzhong Ma. Lead-Free Halide Perovskite Nanocrystals: A New Generation of Photocatalytic Materials [J]. Progress in Chemistry, 2022, 34(8): 1809-1814.
[4] Senlin Tang, Huan Gao, Ying Peng, Mingguang Li, Runfeng Chen, Wei Huang. Non-Radiative Recombination Losses and Regulation Strategies of Perovskite Solar Cells [J]. Progress in Chemistry, 2022, 34(8): 1706-1722.
[5] Yang Zhang, Min Zhang, Hailei Zhao. Double Perovskite Material as Anode for Solid Oxide Fuel Cells [J]. Progress in Chemistry, 2022, 34(2): 272-284.
[6] Zehao Hu, Ting Chen, Yanqiao Xu, Weihui Jiang, Zhixiang Xie. Surface Coating Strategy: From Improving the Luminescence Stability to Lighting and Display Applications of All-Inorganic Cesium Lead Halide Perovskite Nanocrystals [J]. Progress in Chemistry, 2021, 33(9): 1614-1626.
[7] Junxian Hong, Xun Zhu, Lei Ge, Mingchuan Xu, Wenzhen Lv, Runfeng Chen. The Synthesis and Applications of CsPbX3(X = Cl, Br, I) Nanocrystals [J]. Progress in Chemistry, 2021, 33(8): 1362-1377.
[8] Yanmei Ren, Jiajun Wang, Ping Wang. Molybdenum Disulfide as an Electrocatalyst for Hydrogen Evolution Reaction [J]. Progress in Chemistry, 2021, 33(8): 1270-1279.
[9] Ying Yang, Shupeng Ma, Yuan Luo, Feiyu Lin, Liu Zhu, Xueyi Guo. Multidimensional CsPbX3 Inorganic Perovskite Materials: Synthesis and Solar Cells Application [J]. Progress in Chemistry, 2021, 33(5): 779-801.
[10] Ying Yang, Yuan Luo, Shupeng Ma, Congtan Zhu, Liu Zhu, Xueyi Guo. Advances of Electron Transport Materials in Perovskite Solar Cells: Synthesis and Application [J]. Progress in Chemistry, 2021, 33(2): 281-302.
[11] Junwen Cao, Wenqiang Zhang, Yifeng Li, Chenhuan Zhao, Yun Zheng, Bo Yu. Current Status of Hydrogen Production in China [J]. Progress in Chemistry, 2021, 33(12): 2215-2244.
[12] Xiaojing Li, Yonghong Li, Fuhang Yu, Weiyan Qi, Ye Jiang, Qianwen Lu. Catalysts for Removal of Xylene by Catalytic Oxidation [J]. Progress in Chemistry, 2021, 33(12): 2203-2214.
[13] Hongfei Bi, Jinsong Liu, Zhengying Wu, He Suo, Xueliang Lv, Yunlong Fu. Modified Synthesis and Photocatalytic Properties of Indium Zinc Sulfide [J]. Progress in Chemistry, 2021, 33(12): 2334-2347.
[14] Jingjing Xiao, Mu Wang, Weijie Zhang, Xiuying Zhao, Anchao Feng, Liqun Zhang. Preparation and Application of Lead Halide Perovskite-Polymer Composites [J]. Progress in Chemistry, 2021, 33(10): 1731-1740.
[15] Huirong Peng, Molang Cai, Shuang Ma, Xiaoqiang Shi, Xuepeng Liu, Songyuan Dai. Fabrication and Stability of All-Inorganic Perovskite Solar Cells [J]. Progress in Chemistry, 2021, 33(1): 136-150.