中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (11): 1542-1554 DOI: 10.7536/PC150430 Previous Articles   Next Articles

• Review and comments •

The Catalytic Properties for Reduction of Graphene-Based Aerogels and Their Applications

Chen Xiaoyan1, Sun Yiran1, Yu Fei1,2, Chen Junhong1, Ma Jie1*   

  1. 1. State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092;
    2. School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
  • Received: Revised: Online: Published:
PDF ( 2574 ) Cited
Export

EndNote

Ris

BibTeX

Graphene-based aerogels(GA) are three-dimensional macrostructures of graphene with interconnected networks. While inheriting the excellent chemical stability and catalytic performance of graphene, GA exhibits higher specific surface area and excellent conductivity comparing to two-dimensional structure. Because of the superior properties and unique structure, GA are widely applied in catalysis, energy storage and adsorption. This review is expanded around the catalytic reduction performance of GA. Firstly, the preparation methods of GA with different catalytic properties are reviewed, which are classified into four types as graphene aerogels, doped GA, GA composite and doped GA composite. Then the influence on catalytic performance of GA prepared with different methods is introduced in detail. The admirable electrochemical and catalytic performance of GA indicates wide application prospects in fuel cells, dye-sensitized solar cells, microbial electrolysis cells and electrochemical sensors. Finally, the catalysis applications of GA are analysed and outlooked.

Contents
1 Introduction
2 GA and its catalytic properties
3 Synthesis and modification of catalytical active GA
3.1 Preparation of pure GA
3.2 Preparation of doped GA
3.3 Preparation of GA composite
3.4 Preparation of doped GA composite
4 Applications of GA in reduction catalyst
4.1 Applications in positive electrode of fuel cells
4.2 Applications in counter electrode of dye-sensitized solar cells
4.3 Applications in cathode of microbial electrolysis cells
4.4 Applications in hydrogen peroxide electro-chemical sensors
5 Conclusion and outlook

CLC Number: 

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306:666.
[2] Geim A K, Novoselov K S. Nature Materials, 2007, 6:183.
[3] Huang X, Zeng Z, Fan Z, Liu J, Zhang H. Advanced Materials, 2012, 24:5979.
[4] Chao D, Zhu C, Xia X, Liu J, Zhang X, Wang J, Liang P, Lin J, Zhang H, Shen Z X. Nano Letters, 2014, 15:565.
[5] Wang X, Shi G. Energy & Environmental Science, 2015, 8:790.
[6] Wu Z S, Sun Y, Tan Y Z, Yang S, Feng X, Müllen K. Journal of the American Chemical Society, 2012, 134:19532.
[7] Kistler S. Journal of Physical Chemistry, 1932, 36:52.
[8] Ebelmen J. Annale de Chimie et de Physique, 1846, 16:129.
[9] Geffcken W. Kolloid-Zeitschrift, 1939, 86:55.
[10] Dislich H. Angewandte Chemie International Edition in English, 1971, 10:363.
[11] Yoldas B E. Journal of Materials Science, 1975, 10:1856.
[12] Ramsey D E, Davis R F. American Ceramic Society Bulletin, 1975, 54:312.
[13] Tewari P H, Hunt A J, Lofftus K D. Materials Letters, 1985, 3:363.
[14] Jones S M, Sakamoto J. Applications of Aerogels in Apace Exploration, in Aerogels Handbook. Springer, 2011. 721.
[15] Li C, Shi G. Advanced Materials, 2014, 26:3992.
[16] Li C, Shi G. Nanoscale, 2012, 4:5549.
[17] Biener J, Stadermann M, Suss M, Worsley M A, Biener M M, Rose K A, Baumann T F. Energy & Environmental Science, 2011, 4:656.
[18] Kavan L, Yum J H, Grätzel M. ACS Nano, 2010, 5:165.
[19] Schniepp H C, Li J L, McAllister M J, Sai H, Herrera-Alonso M, Adamson D H, Prud'homme R K, Car R, Saville D A, Aksay I A. Journal of Physical Chemistry B, 2006, 110:8535.
[20] Fan X, Zheng W T, Kuo J L. ACS Applied Materials & Interfaces, 2012, 4:2432.
[21] Zhao Y, Kim Y H, Dillon A C, Heben M J, Zhang S B. Physical Review Letters, 2005, 94:155504.
[22] Yoon M, Yang S, Wang E, Zhang Z. Nano Letters, 2007, 7:2578.
[23] Hu X, Wu Y, Li H, Zhang Z. Journal of Physical Chemistry C, 2010, 114:9603.
[24] Novoselov K S, Geim A K, Morozov S, Jiang D, Zhang Y, Dubonos S, Grigorieva I, Firsov A. Science, 2004, 306:666.
[25] Sun H, Xu Z, Gao C. Advanced Materials, 2013, 25:2554.
[26] Kepic D, Markovic Z, Nikolic M, Dramicanin M, Cincovic M M, Markovic B T, Holclajtnerantunovic I. Journal of Optoelectronics & Advanced Materials, 2012, 14:95.
[27] Zhang X, Sui Z, Xu B, Yue S, Luo Y, Zhan W, Liu B. J.Mater.Chem., 2011, 18:6494.
[28] Berger C, Song Z, Li T, Li X, Ogbazghi A Y, Feng R, Dai Z, Marchenkov A N, Conrad E H, First P N. Journal of Physical Chemistry B, 2004, 108:19912.
[29] Srivastava S K, Vankar V D, Kumar V. Nanoscale Research Letters, 2008, 3:25.
[30] Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y, Wu Y, Nguyen S T, Ruoff R S. Carbon, 2007, 45:1558.
[31] Xia X, Chao D, Zhang Y, Shen Z, Fan H. Nano Today, 2014, 9:785.
[32] Li Y, Chen J, Huang L, Li C, Hong J D, Shi G. Advanced Materials, 2014, 26:4789
[33] Chen Z, Ren W, Gao L, Liu B, Pei S, Cheng H M. Nature Materials, 2011, 10:424.
[34] Min B H, Kim D W, Kim K H, Choi H O, Jang S W, Jung H T, Min B H, Kim D W, Kim K H, Choi H O. Carbon, 2014:446.
[35] Yong Y C, Dong X C, Chan-Park M B, Song H, Chen P. ACS Nano, 2012, 6:2394.
[36] Batzill M. Surface Science Reports, 2012, 67:83.
[37] Pettes M T, Ji H, Ruoff R S, Li S. Nano Letters, 2012, 12:2959.
[38] Choi B G, Yang M H, Hong W H, Choi J W, Yun S H. ACS Nano, 2012, 6:4020.
[39] Vickery J L, Patil A J, Mann S. Advanced Materials, 2009, 21:2180.
[40] Estevez L, Kelarakis A, Gong Q, Da'As E H, Giannelis E P. Journal of the American Chemical Society, 2011, 133:6122.
[41] Bai H, Li C, Wang X, Shi G. Chemical Communications, 2010, 14:2376.
[42] Tang Z, Shen S, Zhuang J, Wang X. Angewandte Chemie International Edition, 2010, 49:4707.
[43] Zu S Z and Han B H. Journal of Physical Chemistry C, 2009, 113:13651.
[44] Yin S, Goldovsky Y, Herzberg M, Liu L, Sun H, Zhang Y, Meng F, Cao X, Sun D D, Chen H. Advanced Functional Materials, 2013, 23:2972.
[45] Yang X, Zhu J, Qiu L, Li D. Advanced Materials, 2011, 23:2833.
[46] Zhang L L, Zhao X, Stoller M D, Zhu Y, Ji H, Murali S, Wu Y, Perales S, Clevenger B, Ruoff R S. Nano Letters, 2012, 12:1806.
[47] Zhu Y, Murali S, Stoller M D, Ganesh K J, Cai W, Ferreira P J, Pirkle A, Wallace R M, Cychosz K A, Thommes M. Science, 2011, 332:1537.
[48] Hummers Jr W S, Offeman R E. Journal of the American Chemical Society, 1958, 80:1339.
[49] Xu Y, Lu Z, Hua B, Hong W, Li C, Shi G. Journal of the American Chemical Society, 2009, 131:13490.
[50] Xu Y, Sheng K, Li C, Shi G. ACS Nano, 2010, 4:4324.
[51] Xu Y, Bai H, Lu G, Li C, Shi G. Journal of the American Chemical Society, 2008, 130:5856.
[52] Hong W, Xu Y, Li C, Lu G, Shi G. Electrochemistry Communications, 2008, 10:1555.
[53] Wu X, Zhou J, Xing W, Wang G, Cui H, Zhuo S, Xue Q, Yan Z, Qiao S Z. Journal of Materials Chemistry, 2012, 22:23186.
[54] Cheng W Y, Wang C C, Lu S Y. Carbon, 2013, 54:291.
[55] Chen W, Yan L. Nanoscale, 2011, 3:3132.
[56] Jeon K J, Lee Z, Pollak E, Moreschini L, Bostwick A, Park C M, Mendelsberg R, Radmilovic V, Kostecki R, Richardson T J. ACS Nano, 2011, 5:1042.
[57] ZHU Z F, CHENG S, DONG X N. Journal of Functional Materials, 2013, 21:002.
[58] Kong X K, Chen Q W, Lun Z Y. Journal of Materials Chemistry A, 2014, 2:610.
[59] Zhang C, Mahmood N, Yin H, Liu F, Hou Y. Advanced Materials, 2013, 25:4932.
[60] Choi C H, Chung M W, Kwon H C, Park S H, Woo S I. Journal of Materials Chemistry A, 2013, 1:3694.
[61] Liu H, Liu Y, Zhu D. Journal of Materials Chemistry, 2011, 21:3335.
[62] Choi C H, Chung M W, Kwon H C, Park S H, Woo S I. Journal of Materials Chemistry A, 2013, 1:3694.
[63] Zhou X, Bai Z, Wu M, Qiao J, Chen Z. Journal of Materials Chemistry A, 2015, 3:3343.
[64] Wang M, Wang J, Hou Y, Shi D, Wexler D, Poynton S D, Slade R C T, Zhang W, Liu H, Chen J. ACS Applied Materials & Interfaces, 2015, 7:7066.
[65] Yang S, Zhi L, Tang K, Feng X, Maier J, Müllen K. Advanced Functional Materials, 2012, 22:3634.
[66] Ahn H J, Kim I H, Yoon J C, Kim S I, Jang J H. Chemical Communications, 2014, 50:2412.
[67] Su Y, Zhang Y, Zhuang X, Li S, Wu D, Zhang F, Feng X. Carbon, 2013, 62:296.
[68] Wu Z S, Winter A, Chen L, Sun Y, Turchanin A, Feng X, Müllen K. Advanced Materials, 2012, 24:5130.
[69] Jeong H M, Lee J W, Shin W H, Choi Y J, Shin H J, Kang J K, Choi J W. Nano Letters, 2011, 11:2472.
[70] Wu Z S, Ren W, Xu L, Li F, Cheng H M. ACS Nano, 2011, 5:5463.
[71] Wang S, Iyyamperumal E, Roy A, Xue Y, Yu D, Dai L. Angewandte Chemie International Edition, 2011, 50:11960.
[72] Qiu Y. Physical Chemistry Chemical Physics, 2011, 13:12554.
[73] Tang G, Jiang Z G, Li X, Zhang H B, Dasari A, Yu Z Z. Carbon, 2014, 77:592.
[74] Zhang J, Cao Y, Feng J, Wu P. Journal of Physical Chemistry C, 2012, 116:8063.
[75] Jiang X, Yang X, Zhu Y, Shen J, Fan K, Li C. Journal of Power Sources, 2013, 237:178.
[76] Tang H, Sui Y, Zhu X, Bao Z. Nanoscale Research Letters, 2015, 10:260.
[77] Chen L, Wang X, Zhang X, Zhang H. Journal of Materials Chemistry, 2012, 22:22090.
[78] Fan Z, Yan J, Zhi L, Zhang Q, Wei T, Feng J, Zhang M, Qian W, Wei F. Advanced Materials, 2010, 22:3723.
[79] Ma Y, Sun L, Huang W, Zhang L, Zhao J, Fan Q, Huang W. Journal of Physical Chemistry C, 2011, 115:24592.
[80] Zhang D, Wen X, Shi L, Yan T, Zhang J. Nanoscale, 2012, 4:5440.
[81] Fan W, Miao Y E, Huang Y, Tjiu W W, Liu T. RSC Advances, 2015, 5:9228.
[82] Ma J, Li C, Yu F, Chen J. ChemSusChem, 2014, 7:3304.
[83] Tan C, Cao J, Khattak A M, Cai F, Jiang B, Yang G, Hu S. Journal of Power Sources, 2014, 270:28.
[84] Yin H, Zhang C, Liu F, Hou Y. Advanced Functional Materials, 2014, 24:2930.
[85] Hou Y, Zhang B, Wen Z, Cui S, Guo X, He Z, Chen J. Journal of Materials Chemistry A, 2014, 2:13795.
[86] Wei H, Xu M W, Bao S J, Yang F, Chai H. RSC Advances, 2014, 4:16979.
[87] Cao Z, Zou Y, Xiang C, Sun L X, Xu F. Analytical Letters, 2007, 40:2116.
[88] Ohnuki H, Saiki T, Kusakari A, Endo H, Ichihara M, Izumi M. Langmuir, 2007, 23:4675.
[1] Shuai Li, Na Zhu, Yangjian Cheng, Di Chen. Performance of Resistance to Sulfur Oxide and Regeneration over Copper-Based Small-Pore Zeolites Catalysts for the Selective Catalytic Reduction of NOx with NH3 [J]. Progress in Chemistry, 2023, 35(5): 771-779.
[2] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[3] Qitong Wang, Jiale Ding, Danying Zhao, Yunhe Zhang, Zhenhua Jiang. Dielectric Polymer Materials for Energy Storage Film Capacitors [J]. Progress in Chemistry, 2023, 35(1): 168-176.
[4] Yong Zhang, Hui Zhang, Yi Zhang, Lei Gao, Jianchen Lu, Jinming Cai. Surface Synthesis of Heteroatoms-Doped Graphene Nanoribbons [J]. Progress in Chemistry, 2023, 35(1): 105-118.
[5] Leyi Wang, Niu Li. Relation Among Cu2+, Brønsted Acid Sites and Framework Al Distribution: NH3-SCR Performance of Cu-SSZ-13 Formed with Different Templates [J]. Progress in Chemistry, 2022, 34(8): 1688-1705.
[6] Fengjing Jiang, Hanchen Song. Graphite-based Composite Bipolar Plates for Flow Batteries [J]. Progress in Chemistry, 2022, 34(6): 1290-1297.
[7] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[8] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[9] Jingjing Li, Hongji Li, Qiang Huang, Zhe Chen. Study on the Mechanism of the Influence of Doping on the Properties of Cathode Materials of Sodium Ion Batteries [J]. Progress in Chemistry, 2022, 34(4): 857-869.
[10] Yan Xu, Chungang Yuan. Preparation, Stabilization and Applications of Nano-Zero-Valent Iron Composites in Water Treatment [J]. Progress in Chemistry, 2022, 34(3): 717-742.
[11] Bolin Zhang, Shengyang Zhang, Shengen Zhang. The Use of Rare Earths in Catalysts for Selective Catalytic Reduction of NOx [J]. Progress in Chemistry, 2022, 34(2): 301-318.
[12] Wei Zhang, Kang Xie, Yunhao Tang, Chuan Qin, Shan Cheng, Ying Ma. Application of Transition Metal Based MOF Materials in Selective Catalytic Reduction of Nitrogen Oxides [J]. Progress in Chemistry, 2022, 34(12): 2638-2650.
[13] Meng Pengfei, Zhang Xiaorong, Liao Shijun, Deng Yijie. Enhancing the Performance of Atomically Dispersed Carbon-Based Catalysts Through Metallic/Nonmetallic Elements Co-Doping Towards Oxygen Reduction [J]. Progress in Chemistry, 2022, 34(10): 2190-2201.
[14] Yun Lu, Hongjuan Shi, Yuefeng Su, Shuangyi Zhao, Lai Chen, Feng Wu. Application of Element-Doped Carbonaceous Materials in Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2021, 33(9): 1598-1613.
[15] Zilin Zhu, Zhongxian Fan, Mengzhao Miao, Huaiyi Huang. Photodynamic Therapy of Hypoxic Tumors with Ir(Ⅲ) Complexes [J]. Progress in Chemistry, 2021, 33(9): 1473-1481.