中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (11): 1640-1648 DOI: 10.7536/PC150425 Previous Articles   Next Articles

• Review and comments •

Intelligent Hydrogel-Based Dual Drug Delivery System

Yu Jing1,2, Ha Wei1, Shi Yanping1*   

  1. 1. Key Laboratory of Chemistry of Northwestern Plant Resources of Chinese Academy of Sciences, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No.21375136, 21405164).
PDF ( 2185 ) Cited
Export

EndNote

Ris

BibTeX

In recent years, the development of codelivery systems based on combination strategies has provided an effective approach for reducing side effect and retaining drug bioactivity of anti-cancer drugs. Cancer is one of the most serious diseases endangering human health. There are some significant changes between normal tissues and cancerous tissues, and such changes have motivated researchers to design multiple intelligent hydrogel-based dual drug carriers for drug controlled release. Meanwhile, with the development of effective treatment, modulating multiple targets simultaneously can be achieved through a combination of anticancer drug and biological factor in hydrogel. The dual-drug controlled release from hydrogel is also realized. In the review, the recent advance on the intelligent hydrogel-based dual drug delivery system are summarized, which are classified referring to the mechanism of hydrogel loaded dual drugs, the release principles of drugs and the means of combination of drugs. In addition, some personal perspectives on this field are also presented.

Contents
1 Introduction
2 Intelligent hydrogel-based dual drug delivery carriers
2.1 Temperature-sensitive carriers
2.2 pH sensitive carriers
2.3 Redox sensitive carriers
3 The means of drug combination in hydrogel
3.1 Combination of two anticancer drugs
3.2 Combination of anticancer drug and growth factor
3.3 Combination of anticancer drug and gene
4 Conclusion

CLC Number: 

[1] Kurbacher C, Mallmann P, Kurbacher J, Sass G, Andreotti P, Rahmun A, Hübner H, Krebs D. Anticancer Res., 1993, 14:1961.
[2] Einhorn L H. J. Clin. Oncol., 1990, 8:1777.
[3] Ghosh J, Das J, Manna P, Sil P C. Biomaterials, 2011, 32:4857.
[4] Liu J, Zhao Y, Guo Q, Wang Z, Wang H, Yang Y, Huang Y. Biomaterials, 2012, 33:6155.
[5] Drury J L, Mooney D J. Biomaterials, 2003, 24:4337.
[6] Park J H, Bae Y H. Biomaterials, 2002, 23:1797.
[7] Keilholz U, Weber J, Finke J H, Gabrilovich D I, Kast W M, Disis M L, Kirkwood J M, Scheibenbogen C, Schlom J, Maino V C. J. Immunother., 2002, 25:97.
[8] Parton M, Gore M, Eisen T. J. Clin. Oncol., 2006, 24:5584.
[9] Klebanoff C A, Yamamoto T N, Restifo N P. Nat. Rev. Clin. Oncol., 2014, 11:685.
[10] Vile R, Russell S, Lemoine N. Gene Ther., 2000, 7:2.
[11] Qiu Y, Park K. Adv. Drug Delivery Rev., 2012, 64:49.
[12] He C, Kim S W, Lee D S. J. Control. Release, 2008, 127:189.
[13] Zhao Y L, Stoddart J F. Langmuir, 2009, 25:8442.
[14] Murdan S. J. Control. Release, 2003, 92:1.
[15] Kozlovskaya V, Chen J, Tedjo C, Liang X, Campos-Gomez J, Oh J, Saeed M, Lungu C T, Kharlampieva E. J. Mater. Chem. B, 2014, 2:2494.
[16] Vogt A P, Sumerlin B S. Soft Matter, 2009, 5:2347.
[17] Gil E S, Hudson S M. Prog. Polym. Sci., 2004, 29:1173.
[18] Wang H, Xu F, Wang Y, Liu X, Jin Q, Ji J. Polym. Chem., 2013, 4:3012.
[19] Grassi G, Farra R, Caliceti P, Guarnieri G, Salmaso S, Carenza M, Grassi M. Am. J. Drug Delivery, 2005, 3:239.
[20] Ha W, Yu J, Song X Y, Chen J, Shi Y P. ACS Appl. Mater. Interfaces, 2014, 6:10623.
[21] Jeong B, Bae Y H, Lee D S, Kim S W. Nature, 1997, 388:860.
[22] Jeong B, Bae Y H, Kim S W. J. Control. Release, 2000, 63:155.
[23] Kabanov A V, Batrakova E V, Alakhov V Y. Adv. Drug Delivery Rev., 2002, 54:759.
[24] Kabanov A V, Batrakova E V, Alakhov V Y. J. Control. Release, 2002, 82:189.
[25] Gong C, Wang C, Wang Y, Wu Q, Zhang D, Luo F, Qian Z. Nanoscale, 2012, 4:3095.
[26] Qiao M, Chen D, Hao T, Zhao X, Hu H, Ma X. Int. J. Pharm., 2007, 345:116.
[27] Ma H, He C, Cheng Y, Li D, Gong Y, Liu J, Tian H, Chen X. Biomaterials, 2014, 35:8723.
[28] Li J, Harada A, Kamachi M. Polym. J., 1994, 26:1019.
[29] Ha W, Yu J, Song X Y, Zhang Z J, Liu Y Q, Shi Y P. J. Mater. Chem. B, 2013, 1:5532.
[30] Yang Y Q, Zhao B, Li Z D, Lin W J, Zhang C Y, Guo X D, Wang J F, Zhang L J. Acta Biomater., 2013, 9:7679.
[31] Wei L, Cai C, Lin J, Chen T. Biomaterials, 2009, 30:2606.
[32] Zhao L, Zhu L, Liu F, Liu C, Shan D, Wang Q, Zhang C, Li J, Liu J, Qu X, Yang Z. Int. J. Pharm., 2011, 410:83.
[33] Yu J, Ha W, Chen J, Shi Y P. RSC Adv., 2014, 4:58982.
[34] Schafer F Q, Buettner G R. Free Radical Biol. Med., 2001, 30:1191.
[35] Cheng R, Feng F, Meng F, Deng C, Feijen J, Zhong Z. J. Control. Release, 2011, 152:2.
[36] Ma D, Zhou X Y, Yang Y F, You Y, Liu Z H, Lin J T, Liu T, Xue W. Sci. Adv. Mater., 2013, 5:1307.
[37] Grasselli G, Viganò L, Capri G, Locatelli A, Tarenzi E, Spreafico C, Bertuzzi A, Giani A, Materazzo C, Cresta S. J. Clin. Oncol., 2001, 19:2222.
[38] Xu S, Wang W, Li X, Liu J, Dong A, Deng L. Eur. J. Pharm. Sci., 2014, 62:267.
[39] Andre T, Louvet C, Maindrault-Goebel F, Couteau C, Mabro M, Lotz J, Gilles-Amar V, Krulik M, Carola E, Izrael V. Eur. J. Cancer, 1999, 35:1343.
[40] Dranoff G. Oncogene, 2003, 22:3188.
[41] 常瑞雪(Chang R X), 颜天华(Yan T H), 王秋娟(Wang Q J), 郭青龙(Guo Q L). 药学进展(Progress in Pharmaceutical Sciences), 2011, 35(1):1.
[42] 刘佳(Liu J), 单安山(Shan A S), 孙进华(Sun J H). 黑龙江畜牧兽医(Heilongjiang Animal Science and Veterinary Medicine), 2009,(21):19.
[43] 郭银燕(Guo Y Y), 赵伟(Zhao W), 文剑(Wen J). 东南大学学报(Journal of Southeast University), 2010, 29(3):347.
[44] Seo S H, Han H D, Noh K H, Kim T W, Son S W. Clin. Exp. Metastasis, 2009, 26:179.
[45] Burnett J C, Rossi J J. Chem. Biol., 2012, 19:60.
[46] Deng Q, Li K Y, Chen H, Dai J H, Zhai Y Y, Wang Q, Li N, Wang Y P, Han Z G. Hepatology, 2014, 59:518.
[47] Andey T, Marepally S, Patel A, Jackson T, Sarkar S, O'Connell M, Reddy R C, Chellappan S, Singh P, Singh M. J. Control. Release, 2014, 184:67.
[48] Cheng H, Li Y Y, Zeng X, Sun Y X, Zhang X Z, Zhuo R X. Biomaterials, 2009, 30:1246.
[49] Guo D D, Hong S H, Jiang H L, Kim J H, Minai-Tehrani A, Kim J E, Shin J Y, Jiang T, Kim Y K, Choi Y J, Cho C S, Cho M H. Biomaterials, 2012, 33:2272.
[1] Xiaodong Jing, Ying Sun, Bing Yu, Youqing Shen, Hao Hu, Hailin Cong. Rational Design of Tumor Microenvironment Responsive Drug Delivery Systems [J]. Progress in Chemistry, 2021, 33(6): 926-941.
[2] Kaiyu Zhang, Guowei Gao, Yansheng Li, Yu Song, Yongqiang Wen, Xueji Zhang. Development and Application of DNA Hydrogel in Biosensing [J]. Progress in Chemistry, 2021, 33(10): 1887-1899.
[3] Yifan Xue, Wenhui Meng, Runze Wang, Junjie Ren, Weili Heng, Jianjun Zhang. Supersaturation Theory and Supersaturating Drug Delivery System(SDDS) [J]. Progress in Chemistry, 2020, 32(6): 698-712.
[4] Tianxi He, Wenbin Wang, Jiu Wang, Boshui Chen, Qionglin Liang. Mesoporous Carbon Spheres: Synthesis and Applications in Drug Delivery System [J]. Progress in Chemistry, 2020, 32(2/3): 309-319.
[5] Qiuling Yu, Zheng Li, Chunyan Dou, Yiping Zhao, Jixian Gong, Jianfei Zhang. Design and Application of pH Sensitive and Intelligent Hydrogels [J]. Progress in Chemistry, 2020, 32(2/3): 179-189.
[6] Juan Shen, Yang Zhu, Hongdong Shi, Yangzhong Liu. Multifunctional Nanodrug Delivery Systems for Platinum-Based Anticancer Drugs [J]. Progress in Chemistry, 2018, 30(10): 1557-1572.
[7] Panpan Chen, Bingbing Shi*. Supramolecular Drug Delivery Systems Based on Macrocyclic Hosts [J]. Progress in Chemistry, 2017, 29(7): 720-739.
[8] Li Yan, Huang Wei, Huang Ping, Zhu Xinyuan, Yan Deyue. Anti-Cancer Drug Delivery System [J]. Progress in Chemistry, 2014, 26(08): 1395-1408.
[9] Han Bin, Liao Xiali, Yang Bo. Targeted Drug Delivery Systems Based on Cyclodextrins [J]. Progress in Chemistry, 2014, 26(06): 1039-1049.
[10] Zhang Lei, Liu Xiaoyan, Shen Jingjing, Lu Xiaomei, Fan Quli, Huang Wei. Application of Nanoparticles with Targeting, Triggered Release in Anti-Cancer Drug Delivery [J]. Progress in Chemistry, 2013, 25(08): 1375-1382.
[11] Yang Yiyi, Yan Zhiqiang*, Zhong Jian, He Dannong*, Lu Weiyue. Peptide-Mediated Nano Drug Delivery System for Tumor Targeting [J]. Progress in Chemistry, 2013, 25(06): 1052-1060.
[12] Yang Huayan, Xiong Huanming, Yu Shaoning. Quantum Dots-Based Drug Delivery System [J]. Progress in Chemistry, 2012, 24(11): 2234-2246.
[13] Jiang Caiyun, Qian Weiping. Composites of Intelligent PNIPAM Hydrogels and Au Nanoparticles [J]. Progress in Chemistry, 2010, 22(08): 1626-1632.
[14] Dai Yani1,2|Li Ping1,3**,Wang Aiqin3 . Intelligent Drug Delivery System of Intelligent High Polymer Materials [J]. Progress in Chemistry, 2007, 19(0203): 362-369.
[15] Li Xinwei ,|Sun Lixin,Lin xiaohong,Zheng Liqiang*. Solid Lipid Nanoparticles as Drug Delivery System [J]. Progress in Chemistry, 2007, 19(01): 87-92.