中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (9): 1147-1157 DOI: 10.7536/PC150349 Previous Articles   Next Articles

• Review and comments •

Anode Catalysts and Cathode Catalysts of Direct Methanol Fuel Cells

Lin Ling, Zhu Qing, Xu Anwu*   

  1. Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei 230026, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21271165) and the State Key Basic Science Research Project of China (No. 2011CB933702).
PDF ( 3353 ) Cited
Export

EndNote

Ris

BibTeX

Direct methanol fuel cell (DMFC) appears to be one of the most promising systems of various fuel cells, due to their simple structure, high energy density, easy transportation and environment friendly. The activity and stability of the anode and cathode catalysts determine the performance and stability of DMFC. Platinum (Pt) has the highest activity toward both anodic and cathodic reactions. However, the low abundance and high cost of commercial platinum catalyst hinder the widespread application of DMFC. Therefore, developing non-platinum catalysts is of great significance to the wide application of DMFC. Although researchers have made great progress in non-platinum catalysts research in recent years, the activity and stability of non-platinum catalysts still need further improvement to meet the requirements of commercial application. In this review article, the research progresses anode and cathode catalysts for direct methanol fuel cell in recent years are summarized. The development of the Pt-based and Pt-free anode and cathode catalysts of DMFC is described in detail, respectively. Besides, the synergistic effect from strong interaction between Pt-based catalyst and catalyst supports is also discussed. Finally, the further development in the anode and cathode catalysts of DMFC is expected.

Contents
1 Introduction
2 Anode catalysts
2.1 Platinum-based anode catalysts
2.2 Non-platinum anode catalysts
3 Cathode catalysts
3.1 Platinum-based cathode catalysts
3.2 Non-platinum cathode catalysts
4 Synergistic effect between Pt-based catalyst and supports
5 Conclusion and outlook

CLC Number: 

[1] 衣宝廉(Yi B L). 燃料电池:原理技术应用(Fuel Cell: Principle, technology and application).北京:化学工业出版社(Beijing: Chemical Industry Press),2003.
[2] US. D. o. Energy, 2013 Fuel Cell Technologies Market Report. 2014, http://energy.gov/sites/prod/files/2014/11/f19/fcto_2013_market_report.pdf.
[3] US. D. o. Energy, Multi-Year Research, Development and Demonstration Plan, 3.4: Technical Plan Fuel Cells. 2012, http://energy.gov/sites/prod/files/2014/12/f19/fcto_myrdd_fuel_cells.pdf
[4] Kakati N, Maiti J, Lee S H, Jee S H, Viswanathan B, Yoon Y S. Chem. Rev., 2014, 114: 12397.
[5] Tiwari J N, Tiwari R N, Singh G, Kim K S. Nano Energy, 2013, 2: 553.
[6] Thomas S C, Ren X, Gottesfeld S, Zelenay P. Electrochim. Acta, 2002, 47: 3741.
[7] Li X, Faghri A. J. Power Sources, 2013, 226: 223.
[8] Wen Z H, Juan L, Li J H. Adv. Mater., 2008, 20: 743.
[9] Wu J B, Yang H. Acc. Chem. Res., 2013, 46: 1848.
[10] Kakati N, Maiti J, Lee S H, Jee S H, Viswanathan B, Yoon Y S. Chem. Rev., 2014, 114: 12397.
[11] Lamy C, Léger J M, Srinivasan S. Modern Aspects of Electrochemistry, NY: Plenum Publisher, 2001. 34.
[12] Zhu J, Cheng F Y, Tao Z L, Chen J. J. Phys. Chem. C, 2008, 112: 6337.
[13] Hamel C, Garbarino S B, Irissou E R, Bichat M P, Guay D. J. Phys. Chem. C, 2010, 114: 18931.
[14] Lee E P, Peng Z, Chen W, Chen S, Yang H, Xia Y. ACS Nano, 2008, 2: 2167.
[15] Song Y, Garcia R M, Dorin R M, Wang H, Qiu Y, Coker E N, Steen W A, Miller J E, Shelnutt J A. Nano Lett., 2007, 7: 3650.
[16] Górzny M ?, Walton A S, Evans S D. Adv. Funct. Mater., 2010, 20: 1295.
[17] Shin T Y, Yoo S H, Park S. Chem. Mater., 2008, 20: 5682.
[18] Ghosh S, Raj C R. J. Phys. Chem. C, 2010, 114: 10843.
[19] Zhang H, Zhou W, Du Y, Yang P, Wang C. Electrochem. Commun., 2010, 12: 882.
[20] Yoo S J, Jeon T Y, Kim K S, Lim T H, Sung Y E. Phys. Chem. Chem. Phys., 2010, 12: 15240.
[21] Peng Z, You H, Wu J, Yang H. Nano Lett., 2010, 10: 1492.
[22] Yin A X, Min X Q, Zhu W, Liu W C, Zhang Y W, Yan C H. Chem. Eur. J., 2012, 18: 777.
[23] Wu G, Swaidan R, Li D, Li N. Electrochim. Acta, 2008, 53: 7622.
[24] Wei Z, Guo H, Tang Z. J. Power Sources, 1996, 58: 239.
[25] Chiou Y J, Hsu H J, Lin H M, Liou W J, Liou H W, Wu S H, Chien S H. Particuology, 2011, 9: 522.
[26] Abe H, Matsumoto F, Alden L R, Warren S C, Abrun H D, DiSalvo F J. J. Am. Chem. Soc., 2008, 130: 5452.
[27] Li X, Chen G, Xie J, Zhang L, Xia D, Wu Z. J. Electrochem. Soc., 2010, 157: B580.
[28] Wang Z B, Yin G P, Lin Y G. J. Power Sources, 2007, 170: 242.
[29] Jeon M K, Won J Y, Lee K R, Woo S I. Electrochem. Commun., 2007, 9: 2163.
[30] Xu J B, Hua K F, Sun G Z, Wang C, Lv X Y, Wang Y. J. Electrochem. Commun., 2006, 8: 982.
[31] Chen Z, Waje M, Li W, Yan Y. Angew. Chem. Int. Ed., 2007, 46: 4060.
[32] Choi S M, Kim J H, Jung J Y, Yoon E Y, Kim W B. Electrochim. Acta, 2008, 53: 5804.
[33] Watanabe M, Motoo S. J. Electroanal. Chem., 1975, 60: 267.
[34] Koper M T, Shubina T E, Santen R A. J. Phys. Chem. B, 2002, 106: 691.
[35] Alayoglu S, Zavalij P, Eichhorn B, Wang Q, Frenkel A I, Chupas P. ACS Nano, 2009, 3: 3127.
[36] Mpourmpakis G, Andriotis A N, Vlachos D G. Nano Lett., 2010, 10: 1041.
[37] Wang D, Zhuang L, Lu J T. J. Phys. Chem. C, 2007, 111: 16416.
[38] Watanabe M, Zhu Y M, Uchida H. J. Phys. Chem. B, 2000, 104: 1762.
[39] Wang D Y, Chou H L, Lin Y C, Lai F J. J. Am. Chem. Soc., 2012, 134: 10011.
[40] Liang Y M, Zhang H M, Zhong H X, Zhu X B, Tian Z Q, Xu D Y, Yi B L. J. Catal., 2006, 238: 468.
[41] Zeng J H, Lee J Y. Int. J. Hydrogen Energy, 2007, 32: 4389.
[42] Jeon M K, Zhang Y, McGinn P. J. Electrochim. Acta, 2009, 59: 2837.
[43] Zhang L F, Zhong S L, Xu A W. Angew. Chem. Int. Ed., 2013, 52: 645.
[44] Liu Z L, Zhang X H, Hong L. Electrochem. Commun., 2009, 11: 925.
[45] Zhang J, Liu P, Ma H, Ding Y. J. Phys. Chem. C, 2007, 111: 10382.
[46] Yin Z, Zhang Y, Chen K, Li J, Li W, Tang P, Zhao H, Zhu Q, Bao X, Ma D. Sci. Rep., 2014, 4: 4288.
[47] Abdel Hameed R M, El-Khatib K M. Int. J. Hydrogen Energy, 2010, 35: 2517.
[48] Hays C C, Manoharan R, Goodenough J B. J. Power Sources, 1993, 45: 291.
[49] Tharamani C N, Mayanna S M. Electrochem. Solid-State Lett., 2006, 9: A412.
[50] Hoor F S, Tharamani C N, Ahmed M F, Mayanna S M. J. Power Sources, 2007, 167: 18.
[51] Yu H C, Fung K Z, Guo T C, Chang W L. Electrochim. Acta, 2004, 50: 811.
[52] Deshpandea, Mukasyanb A, Varma A. J. Power Sources, 2006, 158: 60.
[53] Singh R N, Sharma T, Singh A, Anindita, Mishra D, Tiwari S K. Electrochim. Acta, 2008, 53: 2322.
[54] Hosseini M G, Momeni M M, Faraji M. Electroanalysis, 2010, 22: 2620.
[55] Zhao Y C, Nie S L, Wang H W, Tian J N, Ning Z, Li X X. J. Power Sources, 2012, 218: 320.
[56] Samant P V, Fernandes J B. J. Power Sources, 1999, 79: 114.
[57] Zhao Y C, Nie S L, Wang H W, Tian J N, Ning Z, Li X X. J. Power Sources, 2012, 218: 320.
[58] Kudo T, Kawamura G, Okamoto H. J. Electrochem. Soc., 1983, 130: 1491.
[59] Jones S H, Walker D K. J. Electrochem. Soc., 1987, 137: 1653.
[60] Barnett C J, Burstein G T, Kucernak A R J, Williams K R. Electrochim. Acta, 1997, 42: 2381.
[61] Joo J B, Kim J S, Kim P, Yi J. Mater. Lett., 2008, 62: 3497.
[62] Guil-López R, Martinez-Huerta M V, Guillen-Villafuerte O, Pena M A, Fierro J L G, Pastor E. Int. J. Hydrogen Energy, 2010, 35: 7881.
[63] Zhang X F, Shen P K. Int. J. Hydrogen Energy, 2013, 38: 2257.
[64] Leevy R B, Boudart M. Science, 1973, 181: 547.
[65] Zellner M B, Chen J G. Catal. Today, 2005, 99: 299.
[66] Mellinger Z J, Kelly T G, Chen J G. ACS Catal., 2012, 2: 751.
[67] Yaldagard M, Jahanshahi M, Seghatoleslami N. Appl. Surf. Sci., 2014, 317: 496.
[68] Xu C, Shi M, Kang L, Ma C. Mater. Lett., 2013, 15: 183.
[69] Wu J, Zhang J, Peng Z, Yang S, Wagner F T, Yang H. J. Am. Chem. Soc., 2010, 132: 4984.
[70] Lim B, Jiang M, Camargo P H C, Cho E C, Tao Z, Lu X, Zhu Y, Xia Y. Science, 2009, 324: 1302.
[71] Xiong L, Kreidler E, He T. ECS Trans., 2006, 1: 69.
[72] Shao M, Shoemaker K, Peles A, Kaneko K, Protsailo L. J. Am. Chem. Soc., 2010, 132: 9253.
[73] Oezaslan M, Hasché F, Strasser P. J. Electrochem. Soc., 2012, 159: B444.
[74] Holt-Hindle P, Yi Q, Wu G, Koczkur K, Chen A. J. Electrochem. Soc., 2008, 155: K5.
[75] Jeon M K, Zhang Y, McGinn P J. Electrochim Acta, 2010, 55: 5318.
[76] Salgado J R C, Antolini E, Gonzalez E R. Appl. Catal. B-Environ., 2005, 57: 283.
[77] Stamenkovic V R, Fowler B, Mun B S, Wang G, Ross P N, Lucas C A, Markovi D? 1 N M. Science, 2007, 315: 493.
[78] Yang C C, Hsu S T, Chien W C, Shih M C, Chiu S J, Lee K T, Wang C L. Int. J. Hydrogen Energy, 2006, 31: 2076.
[79] Liu L, Pippel E. Angew. Chem. Int. Ed., 2011, 50: 2729.
[80] Dai Y, Ou L, Liang W, Yang F, Liu Yu, Chen S. J. Phys. Chem. C, 2011, 115: 2162.
[81] Stamenkovic V R, Mun B S, Mayrhofer K J J, Ross P N, Markovic N M. J. Am. Chem. Soc., 2006, 128: 8813.
[82] Scott K, Yuan W, Cheng H. J. Appl. Electrochem., 2007, 37: 21.
[83] Guo S, Li, Zhu H, Zhang S, Markovic N M, Stamenkovic V R, Sun S. Angew. Chem. Int. Ed., 2013, 52: 3465.
[84] Koenigsmann C, Santulli A C, Gong K, Vukmirovic M B, Zhou W P, Sutter E, Wong S S, Adzic R R. J. Am. Chem. Soc., 2011, 133: 9783.
[85] Kuttiyiel K A, Sasaki K, Choi Y M, Su D, Liu, P, Adzic R R. Nano Lett., 2012, 12: 6266.
[86] Kuttiyiel K A, Sasaki K, Choi Y M, Su D, Liu, P, Adzic R R. Energy Environ. Sci., 2012, 5: 5297.
[87] Yang H. Angew. Chem. Int. Ed., 2011, 50: 2674.
[88] Han L, Liu H, Cui P, Peng Z, Zhang S, Yang J. Sci. Rep., 2014, 4: 6414.
[89] Lee C L, Huang K L, Tsai Y L, Chao Y J. Electrochem. Commun., 2013, 34: 282.
[90] Chen C, Kang Y, Huo Z, Zhu Z, Huang W, Xin H L, Snyder J D, Li D, Herron J A, Mavrikakis M, Chi M, More K L, Li Y, Markovic N M, Somorjai G A, Yang P, Stamenkovic V R. Science, 2014, 343: 1339.
[91] Wang H, Liang J, Zhu L, Peng F, Yu H, Yang J. Fuel Cells, 2010, 10:99.
[92] Song W, Chen Z, Yang C, Yang Z, Tai J, NanY, Lu H. J. Mater. Chem. A, 2015,3: 1049.
[93] Han X, Cheng F, Zhang T, Yang J, Hu Y, Chen J. Adv Mater., 2014, 26, 2047.
[94] Gong K, Du F, Xia Z, Durstock M, Dai L. Science, 2009, 323: 760.
[95] Liu R, Wu D, Feng X, Müllen K. Angew. Chem. Int. Ed., 2010, 49: 2565.
[96] Shanmugam S, Osaka T. Chem. Commun., 2011, 47: 4463.
[97] Wang Z, Jia R, Zheng J, Zhao J, Li L, Song J, Zhu Z, ACS Nano, 2011, 5: 1677.
[98] Zheng Y, Jiao Y, Jaroniec M, Jin Y, Qiao S Z. Small, 2012, 8: 3550.
[99] Yang L, Jiang S, Zhao Y, Zhu L, Chen S, Wang X, Wu Q, Ma J, Ma Y, Hu Z. Angew. Chem. Int. Ed., 2011, 50: 7132.
[100] Liu Z W, Peng F, Wang H J, Yu H, Zheng W X, Yang J. Angew. Chem. Int. Ed., 2011, 50: 3257.
[101] Byeon A, Lee J W. J. Phys. Chem. C, 2013, 117: 24167.
[102] Jasinski R. Nature, 1964, 201: 1212.
[103] Jahnke H, Schijnbron M, Zimmerman G. Top. Curr. Chem., 1976, 61: 133.
[104] Ramaswamy N, Tylus U, Jia Q, Mukerjee S. J. Am. Chem. Soc., 2010, 135: 15443.
[105] Li Z, Li G, Jiang L, Li J, Sun G, Xia C, Li F. Angew. Chem. Int. Ed., 2015, 54: 1494.
[106] Lefevre M, Proietti E, Jaouen F, Dodelet J P. Science, 2009, 324: 71.
[107] Wu G, Chen Z, Artyushkova K, Garzon F H, Zelenay P. ECS Trans. 2008, 16: 159.
[108] Zhao Y, Watanabe K, Hashimoto K. J. Am. Chem. Soc., 2012, 134: 19528.
[109] Wu G, More K L, Johnston C M, Zelenay P. Science, 2011, 332: 443.
[110] Lin L, Zhu Q, Xu A W. J. Am. Chem. Soc., 2014, 136: 11027.
[111] Alonso-Vante N, Malakhov I V, Nikitenko S G, Savinova E R, Kochubey D I. Electrochim. Atca, 2002, 47: 3807.
[112] Alonso-Vante N, Tributsch H. Nature, 1986, 323: 431.
[113] Alonso-Vante N, Jaegermann W, Tributsch H, Hoenle W, Yvon K. J. Am. Chem. Soc., 1987, 109: 3251.
[114] Solorza-Feria O, Ellmer K, Gierstig M, Alonso-Vante N. Electrochim. Atca, 1994, 39: 1647.
[115] Lee J W, Popov B N. J. Solid State Electrochem., 2007, 11: 1355.
[116] Ozenler S S, Kadrgan F. J. Power Sources, 2006, 154: 364.
[117] Susac D, Sode A, Zhu L A. Wong P C, Teo M, Bizzotto D, Mitchell K A R, Parsons R R, Campbell S A. J. Phys. Chem., 2006, 110: 10762.
[118] Lee K, Zhang L, Zhang J. Electrochem. Commun., 2007, 9: 707.
[119] Feng Y, He T, Alonso-Vante N. Electrochim. Atca., 2009, 54: 5252.
[120] Chen Y, Wang J, Liu H, Banis M N, Li R, Sun X, Sham T K, Ye S, and Knights S. J. Phys. Chem. C, 2011, 115: 3769.
[121] Liu Y, Mustain W E. J. Am. Chem. Soc., 2013, 135: 530.
[122] Zhang K, Yang W, Ma C, Wang Y, Sun C, Chen Y, Duchesne P, Zhou J, Wang J, Hu Y, Banis M N, Zhang P, Li F, Li J, Chen L. NPG Asia Mater., 2015, 7: e153.
[123] Strike D J, De Rooij N F, Koudelka-Hep M, Ulmann M, Augustynski J. J. Appl. Electrochem., 1992, 22: 922.
[124] Laborde H, Leger J M, Lamy C. J. Appl. Electrochem., 1994, 24: 219.
[1] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[2] Yuewen Shao, Qingyang Li, Xinyi Dong, Mengjiao Fan, Lijun Zhang, Xun Hu. Heterogeneous Bifunctional Catalysts for Catalyzing Conversion of Levulinic Acid to γ-Valerolactone [J]. Progress in Chemistry, 2023, 35(4): 593-605.
[3] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[4] Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao. Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2022, 34(6): 1337-1347.
[5] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[6] Shujin Shen, Cheng Han, Bing Wang, Yingde Wang. Transition Metal Single-Atom Electrocatalysts for CO2 Reduction to CO [J]. Progress in Chemistry, 2022, 34(3): 533-546.
[7] Yang Zhang, Min Zhang, Hailei Zhao. Double Perovskite Material as Anode for Solid Oxide Fuel Cells [J]. Progress in Chemistry, 2022, 34(2): 272-284.
[8] Yang Linyan, Guo Yupeng, Li Zhengjia, Cen Jie, Yao Nan, Li Xiaonian. Modulation of Surface and Interface Properties of Cobalt-Based Fischer-Tropsch Synthesis Catalyst [J]. Progress in Chemistry, 2022, 34(10): 2254-2266.
[9] Meng Pengfei, Zhang Xiaorong, Liao Shijun, Deng Yijie. Enhancing the Performance of Atomically Dispersed Carbon-Based Catalysts Through Metallic/Nonmetallic Elements Co-Doping Towards Oxygen Reduction [J]. Progress in Chemistry, 2022, 34(10): 2190-2201.
[10] Wu Qiaomei, Yang Qiyue, Zeng Xianhai, Deng Jiahui, Zhang Liangqing, Qiu Jiarong. Catalytic Conversion of Cellulose-Based Biomass to Diols [J]. Progress in Chemistry, 2022, 34(10): 2173-2189.
[11] Yuan Su, Keming Ji, Jiayao Xun, Liang Zhao, Kan Zhang, Ping Liu. Catalysts for Catalytic Oxidation of Formaldehyde and Reaction Mechanism [J]. Progress in Chemistry, 2021, 33(9): 1560-1570.
[12] Xiangchun Tang, Jiaxiang Chen, Lina Liu, Shijun Liao. Pt-Based Electrocatalysts with Special Three-Dimensional Morphology or Nanostructure [J]. Progress in Chemistry, 2021, 33(7): 1238-1248.
[13] Yu Bai, Shuanjin Wang, Min Xiao, Yuezhong Meng, Chengxin Wang. Phosphoric Acid Based Proton Exchange Membranes for High Temperature Proton Exchange Membrane Fuel Cells [J]. Progress in Chemistry, 2021, 33(3): 426-441.
[14] Jingchen Tian, Gongde Wu, Yanjun Liu, Jie Wan, Xiaoli Wang, Lin Deng. Application of Supported Non-Noble Metal Catalysts for Formaldehyde Oxidation at Low Temperature [J]. Progress in Chemistry, 2021, 33(11): 2069-2084.
[15] Yiqiang Liu, Yimei Qiu, Xing Tang, Yong Sun, Xianhai Zeng, Lu Lin. Glucose Isomerization into Fructose by Chemocatalytic Route [J]. Progress in Chemistry, 2021, 33(11): 2128-2137.