中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (10): 1459-1469 DOI: 10.7536/PC150348 Previous Articles   Next Articles

• Review and comments •

Multispectral Photoacoustic Tomography and Its Development in Biomedical Application

Liu Yingya, Fan Xiao, Li Yanyan, Qu Lulu, Qin Haiyue, Cao Yingnan, Li Haitao*   

  1. School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou 221116, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.21375051) and the Colleges and Universities in Jiangsu Province Plans to Graduate Research and Innovation(No.KYLX_1435).
PDF ( 3279 ) Cited
Export

EndNote

Ris

BibTeX

Multispectral photoacoustic tomography is one of the macroscopic observation methods combining multispectral imaging with photoacoustic computed tomography (PACT) technology. Based on the specific spectral absorption characteristics of different biological tissue, the technology illuminates the tissue with multiple sets of short pulse laser of different wavelengths to produce tissue-specific photoacoustic signal for better photoacoustic imaging and component identification. MSOT combines the high sensitivity and resolution of optical imaging with the ability of the several centimeters deep-tissue imaging by ultrasound imaging, while compensated for the depth limitation of optical imaging and the low contrast of ultrasound imaging. Thus it enables noninvasive real-time imaging in the deep tissue with high-resolution and high-contrast, large penetration depths. Over the last years, MSOT has been applied to detecting the light-absorbing particles within the tumor, evaluating vascular structures and blood oxygenation, imaging the biological fluorescent protein and preliminary studies on the breast cancer patients. With the continuous improvement of photoacoustic imaging system, multispectral photoacoustic imaging technology combined with biomarkers (such as fluorescent reagents, gold particles, etc.) has vast applications in biomedical field, especially to molecular imaging in vivo. In this paper, we gives a brief count of the imaging principle, experimental setup and the performance characteristics of MOST. Furthermore, we mainly summarizes the progress of its latest applications in the biomedical field, particularly in the angiogenesis imaging, early diagnosis of cancer and tumors in situ imaging.

Contents
1 Introduction
2 Photoacoustic imaging technology
2.1 Principle of operation
2.2 Classification of photoacoustic imaging
3 Multispectral photoacoustic tomography
3.1 MSOT experimental setup
3.2 Exogenous contrast agents
3.3 Performance characteristics
4 Advantages and challenges of MSOT
5 Applications of MSOT in biomedicine
5.1 Real-time monitoring of neovascularization
5.2 Early diagnosis of cancer
5.3 Targeting tumor imaging
6 Conclusion and outlook

CLC Number: 

[1] Bell A G. Am. J. Sci., 1880, 118: 305.
[2] Hu S, Maslov K, Tsytsarev V, Wang L V. J. Biomed. Opt., 2009,14: 040503.
[3] Song L, Maslov K, Wang L V. Opt. Lett., 2010, 35: 1482.
[4] Chen Z, Yang S, Xing D. Opt. Lett., 2012, 37: 3414.
[5] Zhang H F, Maslov K, Wang L V. Nat. Protoc., 2007, 2: 797.
[6] Liao L D, Li M L, Lai H Y, Shih Y Y I, Lo Y C, Tsang S, Chen Y Y. Neuroimage, 2010, 52: 562.
[7] Hu S, Yan P, Maslov K, Lee J M, Wang L V. Opt. Lett., 2009, 34: 899.
[8] Zhang H F, Maslov K, Stoica G, Wang L V. Nat. Biotechnol., 2006, 24: 848.
[9] Zemp R J, Song L, Bitton R, Shung K K, Wang L V. Opt. Express, 2008, 16: 18551.
[10] Zhang J, Yang S, Ji X, Zhou Q, Xing D. Journal of the American College of Cardiology, 2014, 64: 385.
[11] Nie L, Wang S, Wang X, Rong P, Ma Y, Liu G, Huang P, Lu G, Chen X. Small, 2014,10: 1585.
[12] Manohar S, Vaartjes S E, van Hespen J C G, Klaase J M, van den Engh F M, Steenbergen W, Van Leeuwen T G. Opt. Express, 2007, 15: 12277.
[13] Herzog E, Taruttis A, Beziere N, Lutich A A, Razansky D, Ntziachristos V. Radiology, 2012, 263: 461.
[14] Laufer J, Johnson P, Zhang E, Treeby B, Cox B, Pedley B, Beard P.J. Biomed. Opt., 2012, 17: 0560161.
[15] Yang X, Wang L V. J. Biomed. Opt., 2008, 13: 044009.
[16] Scarfe L, Rak-Raszewska A, Geraci S, Darssan D, Sharkey J, Huang J, Burton N C, Mason D, Ranjzad P, Kenny S, Gretz N, Lévy R, Park B K, García-Fiñana M, Woolf A S, Murray P, Wilm B. Sci. Rep., 2015, 5: 1.
[17] Razansky D, Vinegoni C, Ntziachristos V. Phys. Med. Biol., 2009, 54: 2769.
[18] Li P C, Wang C R C, Shieh D B, Wei C W, Liao C K, Poe C, Wu Y N. Opt. Express, 2008, 16: 18605.
[19] Taruttis A, Herzog E., Razansky D, Ntziachristos V. Opt. Express, 2010,17: 21414.
[20] Ntziachristos V, Razansky D. Chem. Rev., 2010, 110: 2783.
[21] 龚小竞(Gong X J), 孟静(Meng J), 白晓淞(Bai X S), 郑加祥(Zheng J X), 宋亮(Song L). 中国医疗器械信息(China Medical Device Information), 2013, 19: 1.
[22] 何军锋(He J F), 谭毅(Tan Y). 激光技术(Laser Technology), 2007, 31: 530.
[23] 谭波(Tan B), 胡建明(Hu J M), 杨盼(Yang P), 丁帅军(Ding S J), 朱仁江(Zhu R J). 激光与光电子学进展(Laser & Optoelectronics Progress), 2013, 50: 39.
[24] Kim C, Favazza C, Wang L V. Chem. Rev., 2010, 110: 2756.
[25] Yao J, Wang L V. Laser Photonics Rev., 2013, 7: 758.
[26] Nie L, Huang P, Li W, Yan X, Jin A, Wang Z, Tang Y X, Wang S J, Zhang X F, Niu G, Chen X Y. ACS Nano, 2014, 8: 12141.
[27] Yoon T J, Cho Y S. World Journal of Gastrointestinal Endoscopy, 2013, 5: 534.
[28] Razansky D, Buehler A, Ntziachristos V. Nat. Protoc., 2011, 6: 1121.
[29] 李莉(Li L), 谢文明(Xie W M), 李晖(Li H). 激光与光电子学进展(Laser & Optoelectronics Progress), 2012, 49: 65.
[30] Oraevsky A A, Jacques S L, Tittel F K. Applied Optics, 1997, 36: 402.
[31] Xia W, Piras D, Heijblom M, van Hespen J C, van Veldhoven S, Prins C, Steenbergen W, van Leeuwen T G, Manohar S. International Society for Optics and Photonics, 2011, 6: 80900L.
[32] Liao W, Liu W, Rogers J E, Usmani F, Tang Y, Wang B, Jiang H, Xie H. Solid-State Sensors, Actuators and Microsystems. 2013 Transducers & Eurosensors XXVII: The 17th International Conference on IEEE, 2013. 1831.
[33] Chee R K, Sampaleanu A, Rishi D, Zemp R J. IEEE Trans. Ultrason. Ferroelectr. Freq., 2014, 61: 1393.
[34] Schwarz M, Buehler A, Ntziachristos V. J. Biophotonics, 2014, 9999.
[35] Dima A, Burton N C, Ntziachristos V. J. Biomed. Opt., 2014, 19: 036021.
[36] Buehler A, Herzog E, Razansky D, Ntziachristos V. Opt. Lett., 2010, 35: 2475.
[37] Taruttis A, Herzog E, Razansky D, Ntziachristos V. Opt. Express, 2010, 18: 19592.
[38] Kruger R A, Liu P, Appledorn C R. Med. Phys., 1995, 22: 1605.
[39] Köstli K P, Frenz M, Bebie H, Weber H P. Phys. Med. Biol., 2001, 46: 1863.
[40] Paltauf G, Viator J A, Prahl S A, Jacques S L. J. Acoust. Soc. Am., 2002, 112: 1536.
[41] Jiang H, Yuan Z, Gu X. JOSA A, 2006, 23: 878.
[42] Rosenthal A, Razansky D, Ntziachristos V. IEEE Trans. Med. Imaging, 2010, 29: 1275.
[43] Paige C C, Saunders M A. ACM Trans. Math. Software, 1982, 8: 43.
[44] Jetzfellner T, Razansky D, Rosenthal A, Schulz R, Englmeier K H, Ntziachristos V. Appl. Phys. Lett., 2009, 95: 013703.
[45] Peng F, Yu D, Luo J. Mech. Syst. Sig. Process., 2011, 25: 549.
[46] Razansky D, Ntziachristos V. Med. Phys., 2007, 34: 4293.
[47] Kruger R A, Kiser W L, Reinecke D R, Kruger G A, Miller K D. Mol. Imag., 2003, 2: 113.
[48] Razansky D, Distel M, Vinegoni C, Ma R, Perrimon N, Köster R W, Ntziachristos V. Nat. Photonics, 2009, 3: 412.
[49] Rosenthal A, Razansky D, Ntziachristos V. IEEE Trans. Med. Imaging, 2009, 28: 1997.
[50] Taruttis A, Rosenthal A, Kacprowicz M, Burton N C, Ntziachristos, V. IEEE Trans. Med. Imaging, 2014, 33: 1194.
[51] Taruttis A, Claussen J, Razansky D, Ntziachristos V. J. Biomed. Opt., 2012, 17: 0160091.
[52] Weissleder R, Pittet M J. Nature, 2008, 452: 580.
[53] Giepmans B N G, Adams S R, Ellisman M H, Tsien R Y. Science, 2006, 312: 217.
[54] Beard P. Interface focus, 2011,1: 602.
[55] Dima A, Ntziachristos V. Expert Opinion on Medical Diagnostics, 2011, 5: 263.
[56] Qin H, Zhou T, Yang S, Chen Q, Xing D. Nanomed., 2013, 8: 1611.
[57] Razansky D, Vinegoni C, Ntziachristos V. Opt. Lett., 2007, 32: 2891.
[58] Ntziachristos V, Razansky D. Modern Biopharmaceuticals: Recent Success Stories, 2013: 211.
[59] Zhang H F, Maslov K, Stoica G, Wang L V. Nat. Biotechnol., 2006, 24: 848.
[60] Ma R, Taruttis A, Ntziachristos V, Razansky D. Opt. Express, 2009, 17: 21414.
[61] Ermilov S A, Khamapirad T, Conjusteau A, Leonard M H, Lacewell R, Mehta K, Oraevsky A A. J. Biomed. Opt., 2009, 14: 024007.
[62] Niederhauser J J, Jaeger M, Lemor R, Weber P, Frenz M. IEEE Trans. Med. Imaging, 2005, 24: 436.
[63] Taruttis A, Ntziachristos V. Nat. Photonics, 2015, 9: 219.
[64] Li M L, Oh J T, Xie X, Ku G, Wang W, Li, C, Wang L V. Proc. IEEE, 2008, 96: 481.
[65] Ntziachristos V. Nat. Methods, 2010, 7: 603.
[66] Razansky D, Vinegoni C, Ntziachristos V. Proc. SPIE. 2009, 71770D.
[67] Cox B, Laufer J G, Arridge S R, Beard P C. J. Biomed. Opt., 2012, 17: 0612021.
[68] Folkman J. J. Natl. Cancer. Inst., 1990, 82: 4.
[69] Kruger R A, Kiser W L, Reinecke D R, Kruger G A. Med. Phys., 2003, 30: 856.
[70] Wang X, Stoica G, Xie X, Ku G, Wang L V. J. Biomed. Opt., 2006,11: 024015.
[71] Wang X, Pang Y, Ku G, Xie X, Stoica G, Wang L V. Nat. Biotechnol., 2003, 21: 803.
[72] Siphanto R I, Thumma K K, Kolkman R G M, van Leeuwen T G, de Mul F F M, van Neck J W, Steenbergen W. Opt. Express, 2005, 13: 89.
[73] Ku G, Wang X, Xie X, Stoica G, Wang L V. Appl. Opt., 2005, 44:770.
[74] Dima A, Ntziachristos V. Optics express, 2012, 20: 25044.
[75] Razansky D, Harlaar N J, Hillebrands J L, Taruttis A, Herzog E, Zeebregts C J, Ntziachristos V. Mol. Imag. Biol., 2012, 14: 277.
[76] Gottschalk S, Fehm T F, Deán-Ben X L, Razansky D. Journal of Cerebral Blood Flow & Metabolism, 2015, 35: 531
[77] Buehler A, Kacprowicz M, Taruttis A, Ntziachristos V. Opt. Lett., 2013, 38: 1404.
[78] Buehler A, Herzog E, Ale A, Smith B D, Ntziachristos V, Razansky D. EJNMMI Res., 2012, 2: 14.
[79] Taruttis A, Morscher S, Burton N C, Razansky D, Ntziachristos V. PloS One, 2012, 7: e30491.
[80] Morscher S, Burton N C, Taruttis A, Deliolanis N C, Razansky D, Ntziachristos V. SPIE BiOS. 2012,822330.
[81] Burton N C, Patel M, Morscher S, Driessen W H, Claussen J, Beziere N, Ntziachristos V. Neuroimage, 2013, 65: 522.
[82] Huang G, Si Z, Yang S, Li C, Xing D. Mater. Chem., 2012, 22: 22575.
[83] Rayavarapu R G, Petersen W, Ungureanu C, Post J N, van Leeuwen T G, Manohar S. J. Biomed. Imaging, 2007, 2007: 5.
[84] Eghtedari M, Oraevsky A, Copland J A, Kotov N A, Conjusteau A, Motamedi M. Nano Lett., 2007, 7: 1914
[85] De La Zerda A, Zavaleta C, Keren S, Vaithilingam S, Bodapati S, Liu Z, Gambhir S S. Nat. Nanotechnol., 2008, 3: 557.
[86] Kang N Y, Park S J, Ang X W E, Samanta A, Driessen W H, Ntziachristos V, Chang Y T. Chem. Commun., 2014, 50: 6589.
[87] Deliolanis N C, Ale A, Morscher S, Burton N C, Schaefer K, Radrich K, Ntziachristos V. Mol. Imag. Biol., 2014: 1.
[88] Beziere N, Lozano N, Nunes A, Salichs J, Queiros D, Kostarelos K, Ntziachristos V. Biomaterials, 2015, 37: 415.
[89] Chamberland D L, Agarwal A, Kotov N, Fowlkes J B, Carson P L, Wang X. Nanotechnology, 2008, 19: 095101.
[90] Li L, Zemp R J, Lungu G, Wang L V. J. Biomed. Opt., 2007, 12: 020504.
[91] Shashkov E V, Everts M, Galanzha E I, Zharov V P. Nano Lett., 2008, 8: 3953.
[92] Galanzha E I, Shashkov E V, Kelly T, Kim J W, Yang L, Zharov V P. Nat. Nanotechnol., 2009, 4: 855.
[1] Xuedan Qian, Weijiang Yu, Junzhe Fu, Youxiang Wang, Jian Ji. Fabrication and Biomedical Application of Hyaluronic Acid Based Micro- and Nanogels [J]. Progress in Chemistry, 2023, 35(4): 519-525.
[2] Xueer Cai, Meiling Jian, Shaohong Zhou, Zefeng Wang, Kemin Wang, Jianbo Liu. Chemical Construction of Artificial Cells and Their Biomedical Applications [J]. Progress in Chemistry, 2022, 34(11): 2462-2475.
[3] Zhen Wang, Xi Li, Yuanyuan Li, Qi Wang, Xiaomei Lu, Quli Fan. Activatable NIR-Ⅱ Probe for Tumor Imaging [J]. Progress in Chemistry, 2022, 34(1): 198-206.
[4] Fei Ren, Jianbing Shi, Bin Tong, Zhengxu Cai, Yuping Dong. Near Infrared Fluorescent Dyes with Aggregation-Induced Emission [J]. Progress in Chemistry, 2021, 33(3): 341-354.
[5] Pingping Zhao, Junxing Yang, Jianhui Shi, Jingyi Zhu. Construction and Application of Dendrimer-Based SPECT Imaging Agent [J]. Progress in Chemistry, 2021, 33(3): 394-405.
[6] Jiawei Liu, Jing Wang, Qi Wang, Quli Fan, Wei Huang. Applications of Activatable Organic Photoacoustic Contrast Agents [J]. Progress in Chemistry, 2021, 33(2): 216-231.
[7] Yan Huang, Guodong Liu, Xueji Zhang. Detection and Diagnosis of COVID-19 [J]. Progress in Chemistry, 2020, 32(9): 1241-1251.
[8] Zixuan Wang, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Design, Self-Assembly and Application of DNA-Peptide Hybrid Molecules [J]. Progress in Chemistry, 2020, 32(6): 687-697.
[9] Qiangqiang Hu, Heze Guo, Hongjing Dou. Size Control and Biomedical Applications of ZIF-8 Nanoparticles [J]. Progress in Chemistry, 2020, 32(5): 656-664.
[10] Xiao Xiao, Changsheng Chen, Weiqiang Liu, Yeshun Zhang. Structure, Features and Biomedical Applications of Silk Sericin [J]. Progress in Chemistry, 2017, 29(5): 513-523.
[11] Xiaomei Lu, Pengfei Chen, Wenbo Hu, Yufu Tang, Wei Huang, Quli Fan. Organic Optoelectronic Materials for Photoacoustic Imaging [J]. Progress in Chemistry, 2017, 29(1): 119-126.
[12] Song Lifeng, Zhao Jin, Yuan Xiaoyan. Strengthening of Hydrogels Based on Polysaccharide and Polypeptide [J]. Progress in Chemistry, 2014, 26(0203): 385-393.
[13] Li Tian, Wang Yilong, Guo Fangfang, Shi Donglu. Synthesis and Biomedical Applications of Magnetic Nanocomposites with Complex Morphologies [J]. Progress in Chemistry, 2013, 25(12): 2053-2067.
[14] Zhang Teng, Peng Yunhui, Tong Huimin, Matthew J Rames, Zhang Lei, Ren Gang*. IPET: An Experimental Method to Determine the 3-Dimensional Structure of An Individual Macromolecule [J]. Progress in Chemistry, 2013, 25(05): 669-676.
[15] Mou Tiantian, Zhang Xianzhong*. Myocardial Perfusion Imaging Agents for Positron Emission Tomography [J]. Progress in Chemistry, 2012, (10): 1966-1973.