中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (10): 1470-1480 DOI: 10.7536/PC150321 Previous Articles   Next Articles

• Review and comments •

Methods, Performances and Mechanisms of Separation Membrane Modified by Graphene and Graphene Oxide

Wang Xi1, Guo Xiaoyan1*, Shao Huaiqi2, Zhou Qixing1, Hu Wanli1, Song Xiaojing1   

  1. 1. College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300071, China;
    2. College of Material Science and Chemical Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the Tianjin Research Program of Application Foundation and Advanced Technology (No. 14JCYBJC23100).
PDF ( 2434 ) Cited
Export

EndNote

Ris

BibTeX

Graphene and graphene oxide (GO) have attracted much attention on separation membrane due to their unique properties. In this paper, we review the membrane modification methods by graphene and GO, including membrane blending with GO, nanoporous graphene membrane and layered GO membrane, and comprehensively analyze the performances and mechanisms of these modified membranes. The results show that the blending membrane prepared via the phase inversion method exhibits high water flux, proper solute rejection, excellent hydrophilicity and low fouling propensity, but the unique structure and property of GO does not play effectively in the blending membrane with GO and modified GO; nanoporous graphene membrane has good separation performances because of graphene's high mechanical strength, atomic thickness and ability to support subnanometre pores, but it is challenging to manufacture large graphene with maintaining the structural integrity and control the pore size and pore distribution; the particular properties of GO get the full play in layered GO membranes, which achieve high water flux mainly because the non-oxidized region of GO with nearly frictionless surface promotes the extremely fast flow of water molecules, and obtains high rejection because of rejecting unwanted solutes. Accordingly, layered GO membrane will be thought as a promising membrane separation technology to obtain fine performances of high permeability, selectivity and anti-fouling ability.

Contents
1 Introduction
2 Membrane blending with GO
2.1 Membrane blending with GO directly
2.2 Membrane blending with chemical modified GO
2.3 Membrane blending with GO and other nanomaterials
3 Nanoporous graphene membrane
4 Layered GO membrane
4.1 Fabrication methods of layered GO membrane
4.2 Mechanism of layered GO membrane
5 Conclusion and outlook

CLC Number: 

[1] Pendergast M M, Hoek E M V. Energy & Environmental Science, 2011, 4: 1946.
[2] Shannon M A, Bohn P W, Elimelech M, Georgiadis J G, Marinas B J, Mayes A M. Nature, 2008, 452: 301.
[3] Yan L, Li Y S, Xiang C B. Polymer, 2005, 46: 7701.
[4] Bae T H, Kim I C, Tak T M. Journal of Membrane Science, 2006, 275: 1.
[5] Ebert K, Fritsch D, Koll J, Tjahjawiguna C. Journal of Membrane Science, 2004, 233: 71.
[6] Choi J H, Jegal J, Kim W-N. Journal of Membrane Science, 2006, 284: 406.
[7] Zhao X, Ma J, Wang Z, Wen G, Jiang J, Shi F, Sheng L. Desalination, 2012, 303: 29.
[8] Shah P, Murthy C N. Journal of Membrane Science, 2013, 437: 90.
[9] Brady-Estevez A S, Kang S, Elimelech M. Small, 2008, 4: 481.
[10] Hinds B J, Chopra N, Rantell T, Andrews R, Gavalas V, Bachas L G. Science, 2004, 303: 62.
[11] Majumder M, Chopra N, Andrews R, Hinds B J. Nature, 2005, 438: 44.
[12] Ohba T, Kanoh H, Kaneko K. Nano Letters, 2005, 5: 227.
[13] Allen M J, Tung V C, Kaner R B. Chemical Reviews, 2010, 110: 132.
[14] Zhang L L, Zhou R, Zhao X S. Journal of Materials Chemistry, 2010, 20: 5983.
[15] Liu C, Yu Z, Neff D, Zhamu A, Jang B Z. Nano Letters, 2010, 10: 4863.
[16] Wang Y, Shi Z, Huang Y, Ma Y, Wang C, Chen M, Chen Y. Journal of Physical Chemistry C, 2009, 113: 13103.
[17] 肖蓝(Xiao L),王祎龙(Wang W L),于水利(Yu Sh L),唐玉霖,(Tang Y L).化学进展(Progress in Chemistry), 2013, 25(2/3): 419.
[18] Liu Y, Dong X, Chen P. Chemical Society Reviews, 2012, 41: 2283.
[19] Liu Z, Robinson J T, Sun X, Dai H. Journal of the American Chemical Society, 2008, 130: 10876.
[20] Robinson J T, Tabakman S M, Liang Y, Wang H, Casalongue H S, Daniel V, Dai H. Journal of the American Chemical Society, 2011, 133: 6825.
[21] Shen J, Zhu Y, Yang X, Li C. Chemical Communications, 2012, 48: 3686.
[22] Guo C X, Yang H B, Sheng Z M, Lu Z S, Song Q L, Li C M. Angewandte Chemie-International Edition, 2010, 49: 3014.
[23] Liu Z, Liu Q, Huang Y, Ma Y, Yin S, Zhang X, Sun W, Chen Y. Advanced Materials, 2008, 20: 3924.
[24] Yu G, Hu L, Liu N, Wang H, Vosgueritchian M, Yang Y, Cui Y, Bao Z. Nano Letters, 2011, 11: 4438.
[25] Yin L, Wang J, Lin F, Yang J, Nuli Y. Energy & Environmental Science, 2012, 5: 6966.
[26] Wang D, Kou R, Choi D, Yang Z, Nie Z, Li J, Saraf L V, Hu D, Zhang J, Graff G L, Liu J, Pope M A, Aksay I A. ACS Nano, 2010, 4: 1587.
[27] Chang H, Wang G, Yang A, Tao X, Liu X, Shen Y, Zheng Z. Advanced Functional Materials, 2010, 20: 2893.
[28] 张力(zhang L),吴俊涛(Wu J T),江雷(Jiang L). 化学进展(Progress in Chemistry), 2014, 26(04): 560
[29] Hu W, Peng C, Luo W, Lv M, Li X, Li D, Huang Q, Fan C. ACS Nano, 2010, 4: 4317.
[30] Liu J, Tang J, Gooding J J. Journal of Materials Chemistry, 2012, 22: 12435.
[31] Perreault F, Tousley M E, Elimelech M. Environmental Science & Technology Letters, 2013, 1: 71.
[32] Dreyer D R, Park S, Bielawski C W, Ruoff R S. Chemical Society Reviews, 2010, 39: 228.
[33] Georgakilas V, Otyepka M, Bourlinos A B, Chandra V, Kim N, Kemp K C, Hobza P, Zboril R, Kim K S. Chemical Reviews, 2012, 112: 6156.
[34] Dreyer D R, Todd A D, Bielawski C W. Chemical Society Reviews, 2014, 15: 5288.
[35] Zhang J, Xu Z, Mai W, Min C, Zhou B, Shan M, Li Y, Yang C, Wang Z, Qian X. Journal of Materials Chemistry A, 2013, 1: 3101.
[36] Wang Z, Yu H, Xia J, Zhang F, Li F, Xia Y, Li Y. Desalination, 2012, 299: 50.
[37] Lee J, Chae H-R, Won Y J, Lee K, Lee C-H, Lee H H, Kim I-C, Lee J-M. Journal of Membrane Science, 2013, 448: 223.
[38] Zinadini S, Zinatizadeh A A, Rahimi M, Vatanpour V, Zangeneh H. Journal of Membrane Science, 2014, 453: 292.
[39] Xia S, Ni M. Journal of Membrane Science, 2015, 473: 54.
[40] Zhao C, Xu X, Chen J, Yang F. Journal of Environmental Chemical Engineering, 2013, 1: 349.
[41] Ganesh B M, Isloor A M, Ismail A F. Desalination, 2013, 313: 199.
[42] Xu Z, Zhang J, Shan M, Li Y, Li B, Niu J, Zhou B, Qian X. Journal of Membrane Science, 2014, 458: 1.
[43] Yu L, Zhang Y, Zhang B, Liu J, Zhang H, Song C. Journal of Membrane Science, 2013, 447: 452.
[44] Akin I, Zor E, Bingol H, Ersoz M. The Journal of Physical Chemistry B, 2014, 118: 5707.
[45] Wu H, Tang B, Wu P. Journal of Membrane Science, 2014, 451: 94.
[46] Zhang J, Xu Z, Shan M, Zhou B, Li Y, Li B, Niu J, Qian X. Journal of Membrane Science, 2013, 448: 81.
[47] Cohen-Tanugi D, Grossman J C. Nano Letters, 2012, 12: 3602.
[48] Sint K, Wang B, Král P. Journal of the American Chemical Society, 2008, 130: 16448.
[49] Du H, Li J, Zhang J, Su G, Li X, Zhao Y. The Journal of Physical Chemistry C, 2011, 115: 23261.
[50] Lee C, Wei X, Kysar J W, Hone J. Science, 2008, 321: 385.
[51] Bae S, Kim H, Lee Y, Xu X, Park J-S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y I, Kim Y-J, Kim K S, Ozyilmaz B, Ahn J-H, Hong B H, Iijima S. Nature Nanotechnology, 2010, 5: 574.
[52] Fischbein M D, Drndic M. Applied Physics Letters, 2008, 93: 113107.
[53] Koenig S P, Wang L, Pellegrino J, Bunch J S. Nature Nanotechnology, 2012, 7: 728.
[54] Lu N, Wang J, Floresca H C, Kim M J. Carbon, 2012, 50: 2961.
[55] Bell D C, Lemme M C, Stern L A, Williams J R, Marcus C M. Nanotechnology, 2009, 20: 455301.
[56] Lemme M C, Bell D C, Williams J R, Stern L A, Baugher B W H, Jarillo-Herrero P, Marcus C M. ACS Nano, 2009, 3: 2674.
[57] Suk M E, Aluru N. The Journal of Physical Chemistry Letters, 2010, 1: 1590.
[58] Huang H, Song Z, Wei N, Shi L, Mao Y, Ying Y, Sun L, Xu Z, Peng X. Nature Communications, 2013, 4: 2979.
[59] Sun P, Zhu M, Wang K, Zhong M, Wei J, Wu D, Xu Z, Zhu H. ACS Nano, 2012, 7: 428.
[60] Huang H, Mao Y, Ying Y, Liu Y, Sun L, Peng X. Chemical Communications, 2013, 49: 5963.
[61] Hu M, Mi B. Environmental Science & Technology, 2013, 47: 3715.
[62] Hu M, Mi B. Journal of Membrane Science, 2014, 469: 80.
[63] Wei N, Peng X, Xu Z. ACS Applied Materials & Interfaces, 2014, 6: 5877.
[64] Boukhvalov D W, Katsnelson M I, Son Y-W. Nano Letters, 2013, 13: 3930.
[65] Joshi R K, Carbone P, Wang F C, Kravets V G, Su Y, Grigorieva I V, Wu H A, Geim A K, Nair R R. Science, 2014, 343: 752.
[66] Mi B. Science, 2014, 343: 740.
[1] Yong Zhang, Hui Zhang, Yi Zhang, Lei Gao, Jianchen Lu, Jinming Cai. Surface Synthesis of Heteroatoms-Doped Graphene Nanoribbons [J]. Progress in Chemistry, 2023, 35(1): 105-118.
[2] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[3] Hongji Jiang, Meili Wang, Zhiwei Lu, Shanghui Ye, Xiaochen Dong. Graphene-Based Artificial Intelligence Flexible Sensors [J]. Progress in Chemistry, 2022, 34(5): 1166-1180.
[4] Hui Zhang, Wei Xiong, Jianchen Lu, Jinming Cai. Magnetic Properties and Engineering of Nanographene in Ultra-High Vacuum [J]. Progress in Chemistry, 2022, 34(3): 557-567.
[5] Xiaoxiao Xiang, Xiaowen Tian, Huie Liu, Shuang Chen, Yanan Zhu, Yuqin Bo. Controlled Preparation of Graphene-Based Aerogel Beads [J]. Progress in Chemistry, 2021, 33(7): 1092-1099.
[6] Lei Wu, Lihui Liu, Shufen Chen. Flexible Organic Light-Emitting Diodes Using Carbon-Based Transparent Electrodes [J]. Progress in Chemistry, 2021, 33(5): 802-817.
[7] Suye Lv, Liang Zou, Shouliang Guan, Hongbian Li. Application of Graphene in Neural Activity Recording [J]. Progress in Chemistry, 2021, 33(4): 568-580.
[8] Binbin Zhu, Xiaohui Zheng, Guang Yang, Xu Zeng, Wei Qiu, Bin Xu. Mechanical Property Regulation of Graphene Oxide Separation Membranes [J]. Progress in Chemistry, 2021, 33(4): 670-677.
[9] Xiansheng Luo, Hanlin Deng, Jiangying Zhao, Zhihua Li, Chunpeng Chai, Muhua Huang. Synthesis and Application of Holey Nitrogen-Doped Graphene Material(C2N) [J]. Progress in Chemistry, 2021, 33(3): 355-367.
[10] Yang Liu, Xinbo Zhang, Yingcan Zhao. Two-Dimensional MoS2 Nanomaterials and Applications in Water Treatment [J]. Progress in Chemistry, 2020, 32(5): 642-655.
[11] Jianlei Qi, Qinqin Xu, Jianfei Sun, Dan Zhou, Jianzhong Yin. Synthesis, Characterization and Analysis of Graphene-Supported Single-Atom Catalysts [J]. Progress in Chemistry, 2020, 32(5): 505-518.
[12] Le Gong, Rong Yang, Rui Liu, Liping Chen, Yinglin Yan, Zufei Feng. Application of Graphene Quantum Dots in Energy Storage Devices [J]. Progress in Chemistry, 2019, 31(7): 1020-1030.
[13] Jie Liu, Yuan Zeng, Jun Zhang, Haijun Zhang, Jianghao Liu. Preparation, Structures and Properties of Three-Dimensional Graphene-Based Materials [J]. Progress in Chemistry, 2019, 31(5): 667-680.
[14] Aobo Geng, Qiang Zhong, Changtong Mei, Linjie Wang, Lijie Xu, Lu Gan. Applications of Wet-Functionalized Graphene in Rubber Composites [J]. Progress in Chemistry, 2019, 31(5): 738-751.
[15] Xiaojuan Wang, Zhenzhen Liu, Qi Chen, Xiaoqiang Wang, Fang Huang. Interactions between Graphene Materials and Proteins [J]. Progress in Chemistry, 2019, 31(2/3): 236-244.