中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (8): 1074-1086 DOI: 10.7536/PC150314 Previous Articles   Next Articles

Telechelic Polymers and Block Copolymers Prepared via Olefin-Metathesis Polymerization

Feng Yuchen, Jie Suyun*, Li Bogeng   

  1. State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Basic Research Program of China (973 Program)(No. 2011CB606004).
PDF ( 2657 ) Cited
Export

EndNote

Ris

BibTeX

Because of the two functional groups in their polymer chain ends, telechelic polymers are usually used for the preparation of copolymers with special structures, such as block, graft, star-like, hyperbranched copolymers. Telechelic polymers are mainly prepared by traditional radical polymerization, controlled/“living” radical polymerization, anionic polymerization, cationic polymerization, metathesis polymerization, and condensation polymerization, etc. In comparison with traditional polymerization methods, olefin metathesis polymerization can be conducted in milder conditions and the molecular weight and structure of products are more controllable. In this review, the preparation of telechelic polymers via ring-opening metathesis polymerization (ROMP) and acyclic diene metathesis (ADMET) polymerization in the presence of chain transfer agents are introduced. And the preparation of block copolymers via the combination with other living polymerization methods (such as NMRP, ATRP, RAFT, ROP, etc.) will be also included.

Contents
1 Introduction
2 Catalysts for olefin metathesis polymerization
3 Telechelic polymers via olefin metathesis polymerization
3.1 ROMP
3.2 ADMET polymerization
4 Block copolymers via the combination with other living polymerization methods
4.1 Combination of ROMP and NMRP
4.2 Combination of ROMP and ATRP
4.3 Combination of ROMP and RAFT
4.4 Combination of ROMP and ROP
5 Conclusion

CLC Number: 

[1] Tezuka Y. Prog. Polym. Sci., 1992, 17: 471.
[2] Bernaerts K V, Prez F E D. Prog. Polym. Sci., 2006, 31: 671.
[3] Yagci Y, Tasdelen M A. Prog. Polym. Sci., 2006, 31: 1133.
[4] Okcu S S, Durmaz Y Y, Yagci Y. Des. Monomers Polym., 2010, 13: 459.
[5] Bertrand A, Chen S, Souharce G, Ladaviere C, Fleury E, Bernard J. Macromolecules, 2011, 44: 3694.
[6] Sudo A, Hamaguchi T, Aoyagi N, Endo T. J. Polym. Sci. Part A: Polym. Chem., 2013, 51: 318.
[7] Yang S K, Ambade A V, Weck M. J. Am. Chem. Soc., 2010, 132: 1637.
[8] Huang Z, Ji H, Mays J W, Dadmun M D. Macromolecules, 2008, 41: 1009.
[9] Sugai N, Heguri H, Ohta K, Meng Q Y, Yamamoto T, Tezuka Y. J. Am. Chem. Soc., 2010, 132: 14790.
[10] Kricheldorf H R, Stukenbrock T. Polymer, 1997, 38: 3373.
[11] Bayer O, Bayer F, Rhein L. Angew. Chem. Int. Ed., 1947, 59: 257.
[12] Uraneck C A, Hsieh H L, Buck O G. J. Polym. Sci., 1960, 46: 535.
[13] Wanamaker C L, O'Leary L E, Lynd N A, Hillmyer M A, Tolman W B. Biomacromolecules, 2007, 8: 3634.
[14] Guillaume S M. Eur. Polym. J., 2013, 49: 768.
[15] Chen S, Deng Y, Chang X, Barqawi H, Schulzc M, Binder W H. Polym. Chem., 2014, 5: 2891.
[16] Noro A, Hayashi M, Ohshika A, Matsushita Y. Soft Matter, 2011, 7: 1667.
[17] Boutevin B, David G, Boyer C. Adv. Polym. Sci., 2007, 206: 31.
[18] Braunecker W A, Matyjaszewski K. Prog. Polym. Sci., 2007, 32: 93.
[19] Jagur-Grodzinski J. J. Polym. Sci. Part A: Polym. Chem., 2002, 40: 2116.
[20] Tasdelen M A, Kahveci M U, Yagci Y. Prog. Polym. Sci., 2011, 36: 455.
[21] Mutlu H, Espinosaac L M, Meier M A R. Chem. Soc. Rev., 2011, 40: 1404.
[22] Hilf S, Kilbinger A F M. Nat. Chem., 2009, 1: 537.
[23] Yokozawa T, Asai T, Sugi R, Ishigooka S, Hiraoka S. J. Am. Chem. Soc., 2000, 122: 8313.
[24] Grubbs R H, Chang S. Tetrahedron, 1998, 54: 4413.
[25] Furstner A. Angew. Chem. Int. Ed., 2000, 39: 3012.
[26] Grubbs R H. Tetrahedron, 2004, 60: 7117.
[27] Anderson A W, Merckling N G. US 2721189, 1955.
[28] Anderson A W, Merckling N G. Chem. Abstr., 1956, 50: 3008.
[29] Calderon N. Acc. Chem. Res., 1972, 5: 127.
[30] Harisson P J L, Chauvin Y. Makromol. Chem., 1970, 141.
[31] Schrock R R, Murdzek J S, Bazan G C, Robbins J, DiMare M, O'Regan M. J. Am. Chem. Soc., 1990, 112: 3875.
[32] Nguyen S T, Johnson L K, Grubbs R H. J. Am. Chem. Soc., 1992, 114: 3974.
[33] Nguyen S T, Grubbs R H. J. Am. Chem. Soc., 1993, 115: 9858.
[34] Scholl M, Ding S, Lee C W, Grubbs R H. Org. Lett., 1999, 1: 953.
[35] Courchay F C, Sworen J C, Ghiviriga I, Abboud K A, Wagener K B. Organometallics, 2006, 25: 6074.
[36] Higman C S, Plais L, Fogg D E. ChemCatChem, 2013, 5: 3548.
[37] Kingsbury J S, Harrity J P A, Bonitatebus P J, Hoveyda A H. J. Am. Chem. Soc., 1999, 121: 791.
[38] Garber S B, Kingsbury J S, Gray B L, Hoveyda A H. J. Am. Chem. Soc., 2000, 122: 8168.
[39] Michrowska A, Bujok R, Harutyunyan S, Sashuk V, Dolgonos G, Grela K. J. Am. Chem. Soc., 2004, 126: 9318.
[40] Hoveyda A H, Gillingham D G, Veldhuizen J J V, Kataoka O, Garber S B, Kingsbury J S, Harrity J P A. Org. Biomol. Chem., 2004, 2: 8.
[41] Bielawskia C W, Grubbs R H. Prog. Polym. Sci., 2007, 32: 1.
[42] Schleyer P Y R., William J E, Blanchard K R. J. Am. Chem. Soc., 1970, 92: 2377.
[43] Alliger N L, Sprague J T. J. Am. Chem. Soc., 1972, 94: 5734.
[44] Pitet L M, Hillmyer M A. Macromolecules, 2011, 44: 2378.
[45] Martinez H, Hillmyer M A. Macromolecules, 2014, 47: 479.
[46] Hillmyer M A, Grubbs R H. Macromolecules, 1993, 26: 872.
[47] Hillmyer M A, Grubbs R H. Macromolecules, 1996, 28: 8662.
[48] Hillmyer M A, Nguyen S T, Grubbs R H. Macromolecules, 1997, 30: 718.
[49] Bielawski C W, Scherman O A , Grubbs R H. Polymer, 2001, 42: 4939.
[50] Thomas R M, Grubbs R H. Macromolecules, 2010, 43: 3705.
[51] Morita T, Maughon B R, Bielawski C W, Grubbs R H. Macromolecules, 2000, 33: 6621.
[52] Ji S, Hoye T R, Macosko C W. Macromolecules, 2004, 37: 5485.
[53] Maughon B R, Morita T, Bielawski C W, Grubbs R H. Macromolecules, 2000, 33: 1929.
[54] Annunziata L, Fouquay S, Michaud G, Simon F, Guillaume S M, Carpentier J F. Polym. Chem., 2013, 4: 1313.
[55] Diallo A K, Annunziata L, Fouquay S, Michaud G, Simon F, Brusson J M, Guillaume S M, Carpentier J F. Polym. Chem., 2014, 5: 2583.
[56] Scherman O A, Rutenberg I M, Grubbs R H. J. Am. Chem. Soc., 2003, 125: 8515.
[57] Miller R G, Pinke P A, Baker D J. J. Am. Chem. Soc., 1970, 92: 4490.
[58] Wagener K B, Boncella J M, Ne1 J G. Macromolecules, 1991, 24: 2649.
[59] Lindmark-Hamberg M, Wagener K B. Macromolecules, 1987, 20: 2949.
[60] Marmo J C, Wagener K B. Macromolecules, 1993, 26: 2137.
[61] Marmo J C, Wagener K B. Macromolecules, 1995, 28: 2602.
[62] Tamura H, Maeda N, Matsumoto R, Nakayama A, Hayashi H, Ikushima K, Kuraya M. J. Macromol. Sci. Pure Appl. Chem., 1999, A36: 1153.
[63] Schwendeman J E, Wagener K B. Macromol. Chem. Phys., 2009, 210: 1818.
[64] Tamura H, Nakayama A. J. Macromol. Sci. Pure Appl. Chem., 2002, A39: 745.
[65] Brzezinska K R, Deming T J. Macromolecules, 2001, 34: 4348.
[66] Brzezinska K R, Wagener K B, Burns G T. J. Polym. Sci. Part A: Polym. Chem., 1999, 37: 849.
[67] Delgado P A, Zuluaga F, Matloka P, Wagener K B. J. Polym. Sci. Part A: Polym. Chem., 2009, 47: 5180.
[68] Miura Y, Sakai Y, Taniguchi I. Polymer, 2003, 44: 603.
[69] Banik S M, Monnot B L, Weber R L, Mahanthappa M K. Macromolecules, 2011, 44: 7141.
[70] Bielawski C W, Morita T, Grubbs R H. Macromolecules, 2000, 33: 678.
[71] Xie M, Kong Y, Han H, Shi J, Ding L, Song C, Zhang Y. React. Funct. Polym., 2008, 68: 1601.
[72] Ji S, Hoye T R, Macosko C W. Polymer, 2008, 49: 5307.
[73] Mahanthappa M K, Bates F S, Hillmyer M A. Macromolecules, 2005, 38: 7890.
[74] Xu Y, Thurber C M, Macosko C W, Lodge T P, Hillmyer M A. Ind. Eng. Chem. Res., 2014, 53: 4718.
[75] Katayama H, Fukuse Y, Nobuto Y, Akamatsu K, Ozawa F. Macromolecules, 2003, 36: 7020.
[76] Pitet L M, Hillmyer M A. Macromolecules, 2009, 42: 3674.
[77] Pitet L M, Amendt M A, Hillmyer M A. J. Am. Chem. Soc., 2010, 132: 8230.
[78] Pitet L M, Chamberlain B M, Hauser A W, Hillmyer M A. Macromolecules, 2010, 43: 8018.
[79] Xiang S, Zhang Q, Zhang G, Jiang W, Wang Y, Zhou H, Li Q, Tang J. Biomacromolecules, 2014, 15: 3112.
[1] Lijun Bao, Junwu Wei, Yangyang Qian, Yujia Wang, Wenjie Song, Yunmei Bi. Synthesis, Properties and Applications of Enzyme-Responsive Linear-Dendritic Block Copolymers [J]. Progress in Chemistry, 2022, 34(8): 1723-1733.
[2] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[3] Yuling Liu, Tengda Hu, Yilian Li, Yang Lin, Borsali Redouane, Yingjie Liao. Fast Self-Assembly Methods of Block Copolymer Thin Films [J]. Progress in Chemistry, 2022, 34(3): 609-615.
[4] Wang Xinbo, Zhang Shuhong, He Xiaodong. Network Mesostructures in Self-Assembly of Diblock Copolymers and the Application [J]. Progress in Chemistry, 2016, 28(6): 860-871.
[5] Xiong Lina, Zhang Xueqin, Sun Ying, Yang Hong. Synthesis, Self-Assembly and Application of All-Conjugated Block Copolymers [J]. Progress in Chemistry, 2015, 27(12): 1774-1783.
[6] Fu Chao, Zhu Yutian, Shi Dean. Separation and Characterization of Block Copolymers by Liquid Chromatography at the Critical Condition [J]. Progress in Chemistry, 2014, 26(01): 140-151.
[7] Wang Zhipeng, Yuan Jinying* . Applications of Diels-Alder Reaction in Synthesis of Polymers with Well-Defined Architectures [J]. Progress in Chemistry, 2012, 24(12): 2342-2351.
[8] He Wen, Ding Yuanju, Lu Zaijun, Yang Qifeng. Amphiphilic Block Copolymer Micelles for Medical Materials [J]. Progress in Chemistry, 2011, 23(5): 930-940.
[9] Li Di Zhang Long Fan Quli Huang Wei. Self-Assembly of Conjugated Rod-Coil Block Copolymers [J]. Progress in Chemistry, 2009, 21(12): 2660-2673.
[10] Qun Zhao,Peihong Ni** . Recent Progress in pH/Temperature-Responsive Amphiphilic Block Copolymers [J]. Progress in Chemistry, 2006, 18(06): 768-779.
[11] Zhou Junfeng,Wang Li*,Chen Tao,Wang Wei. Preparation of Nanomicelles through Self-Assembly of Amphiphilic Block Copolymers [J]. Progress in Chemistry, 2005, 17(06): 1102-1109.
[12] Dou Hongjing*,Sun Kang. Double-Hydrophilic Block Copolymers and Their Self-Assembly [J]. Progress in Chemistry, 2005, 17(05): 854-859.