中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (6): 775-784 DOI: 10.7536/PC150312 Previous Articles   

• Review and evaluation •

Chiral Supramolecular Assemblies Based on Aromatic Molecules-Carbohydrate Conjugates and Their Applications

Wang Kerang*1,2   

  1. 1. Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 07100;
    2. Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Baoding 071002, China
  • Received: Revised: Online: Published:
  • Contact: 10.7536/PC150312 E-mail:kerangwang@hbu.edu.cn
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.21372059) and the Foundation of Hebei Education Department (No. YQ2013006).
PDF ( 2746 ) Cited
Export

EndNote

Ris

BibTeX

In nature, helical self-assembly by non-covalent interactions is a widely observed feature. Inspired by the unique features of fascinating chiral superstructures, chemists have paid more attention to design numerous helical supramolecular assemblies. In them, carbohydrates as a natural source of chirality have been widely investigated in the construction of chiral supramolecular assembly, which possessed potential application in materials, chemistry and biology. This review aims to overview of the chiral supramolecular assembly based on aromatic molecules-carbohydrate conjugates, including perylene bisimides, azobenzene, poly(p-phenylene), porphyrins, and so on. Their gel properties, supramolecular chirality and functionalization in the mixtures of organic solution and water, or in water, and the relationship between their supramolecular chirality and the type of the carbohydrates are described. Furthermore, the potential application and future development of the chiral supramolecular assembly based on carbohydrates are discussed.

Contents
1 Introduction
2 Chiral supramolecular assembly based on perylene bisimides-carbohydrate conjugates
2.1 Solvent controlled supramolecular assembly
2.2 Substituent controlled supramolecular assembly in the bay position
2.3 Temperature controlled supramolecular assembly
2.4 Water soluble supramolecular assembly
3 Chiral supramolecular assembly based on azobenzene-carbohydrate conjugates
4 Chiral supramolecular assembly based on poly(p-phenylene)-carbohydrate conjugates
5 Chiral supramolecular assembly based on porphyrin-carbohydrate conjugates
6 Chiral supramolecular assembly based on other aromatic molecules-carbohydrate conjugates
7 Conclusion

CLC Number: 

[1] Mackenzie K R. Chem. Rev., 2006, 106: 1931.
[2] Hannah K, Armitage B A. Acc. Chem. Res., 2004, 37: 845.
[3] Wang Y, Xu J, Wang Y W, Chen H Y. Chem. Soc. Rev., 2013, 42: 2930.
[4] Lim Y B, Moon K S, Lee M. Chem. Soc. Rev., 2009, 38: 925.
[5] 袁菁 (Yuan J), 张莉 (Zhang L), 黄昕 (Huang X), 姜思光(Jiang S G), 刘鸣华 (Liu M H). 化学进展 (Progress in Chemistry), 2005, 17: 780.
[6] 靳清贤 (Jin Q X), 李晶 (Li J), 李孝刚 (Li X G), 张莉(Zhang L), 方少明 (Fang S M), 刘鸣华 (Liu M H). 化学进展 (Progress in Chemistry), 2014, 26: 919.
[7] Kim H J, Kim T, Lee M. Acc. Chem. Res., 2011, 44: 72.
[8] Palmer L C, Stupp S I. Acc. Chem. Res., 2008, 41: 1674.
[9] Ryu J H, Hong D J, Lee M. Chem. Commun., 2008, 9: 1043.
[10] Kim Y, Li W, Shin S, Lee M. Acc. Chem. Res., 2013, 46: 2888.
[11] Dube D H, Bertozzi C R. Nat. Rev. Drug Discov., 2005, 4: 477.
[12] Ohtsubo K, Marth J D. Cell, 2006, 126: 855.
[13] Kim B S, Hong D J, Bae J, Lee M. J. Am. Chem. Soc., 2005, 127: 16333.
[14] Kim B S, Yang W Y, Ryu J H, Yoo Y S, Lee M. Chem. Commun., 2005, 15: 2035.
[15] Lee D W, Kim T, Park II S, Huang Z, Lee M. J. Am. Chem. Soc., 2012, 134: 14722.
[16] Ryu J H, Lee E, Lim Y B, Lee M. J. Am. Chem. Soc., 2007, 129: 4808.
[17] Kim T, Lee H, Kim Y, Nam J M, Lee M. Chem. Commun., 2013, 49: 3949.
[18] Lim Y B, Lee M. Org. Biomol. Chem., 2007, 5: 401.
[19] John G, Masuda M, Okada Y, Shimizu T. Adv. Mater., 2001, 13: 715.
[20] Jung J H, John G, Yoshida K, Shimizu T. J. Am. Chem. Soc., 2002, 124: 10674.
[21] Jung J H, Do Y, Lee Y A, Shimizu T. Chem. Eur. J., 2005, 11: 5538.
[22] Jung J H, John G, Masuda M, Yoshida K, Shinkai S, Shimizu T. Langmuir, 2001, 17: 7229.
[23] John G, Jung J H, Minamikawa H, Yoshida K, Shimizu T. Chem. Eur. J., 2002, 8: 5494.
[24] Vemula P K, Aslam U, Mallia V A, John G. Chem. Mater., 2007, 19: 138.
[25] Vemula P K, John G. Acc. Chem. Res., 2008, 41: 769.
[26] Shimizu T, Masuda M, Minamikawa H. Chem. Rev., 2005, 105: 1401.
[27] Würthner F. Chem. Commun., 2004, 14: 1564.
[28] Schenning A P H J, Herrikhuyzen J V, Jonkheijm P, Chen Z J, Würthner F, Meijer E W. J. Am. Chem. Soc., 2002, 124: 10252.
[29] Krieg E, Rybtchinski B. Chem. Eur. J., 2011, 17: 9016.
[30] Ho R M, Li M C, Lin S C, Wang H F, Lee Y D, Hasegawa H, Thomas E. J. Am. Chem. Soc., 2012, 134: 10974.
[31] Kumar M, George S J. Chem. Sci., 2014, 5: 3025.
[32] Seki T, Asano A, Seki S, Kikkawa Y, Murayama H, Karatsu T, Kitamura A, Yagai S. Chem. Eur. J., 2011, 17: 3598.
[33] Stepaneko V, Li X Q, Gershberg J, Würthner F. Chem. Eur. J., 2013, 19: 4176.
[34] Dehm V, Chen Z J, Baumeister U, Prins P, Siebbeles L D A, Würthner F. Org. Lett., 2007, 9: 1085.
[35] Ke D M, Tang A L, Zhan C L, Yao J N. Chem. Commun., 2013, 49: 4914.
[36] Kumar J, Nakashima T, Tsumatori H, Mori M, Naito M, Kawai T. Chem. Eur. J., 2013, 19: 14090.
[37] Kumar J, Nakashima T, Kawai T. Langmuir, 2014, 30: 6030.
[38] Huang Y W, Hu J C, Kuang W F, Wei Z X, Faul C F J. Chem. Commun., 2011, 47: 5554.
[39] Huang Y W, Wang J C, Wei Z X. Chem. Commun., 2014, 50: 8343.
[40] Hu J C, Kuang W F, Deng K, Zou W J, Huang Y W, Wei Z X, Faul C F J. Adv. Funct. Mater., 2012, 22: 4149.
[41] Guo Q, Wang J C, Zhu L Y, Wei Z X. Chin. J. Chem., 2015, 33: 95.
[42] Huang Y W, Wang J C, Zhai H Y, Zhu L Y, Wei Z X. Soft Mater., 2014, 10: 7920.
[43] Sun K, Xiao C Y, Liu C M, Fu W X, Wang Z H, Li Z B. Langmuir, 2014, 30: 11040.
[44] Wang K R, An H W, Wu L, Zhang J C, Li X L. Chem. Commun., 2012, 48: 5644.
[45] Wang K R, An H W, Wang Y Q, Zhang J C, Li X L. Org. Biomol. Chem., 2013, 11: 1007.
[46] Wang K R, An H W, Rong R X, Cao Z R, Li X L. Biosens. Bioelectron., 2014, 58: 27.
[47] Wang K R, Han D, Cao G J, Li X L. Chem. Asian J., 2015, 10: 1204.
[48] Samanta A, Stuart M C A, Ravoo B J. J. Am. Chem. Soc., 2012, 134: 19909.
[49] Srinivas O, Mitra N, Surolia A, Jayaraman N. J. Am. Chem. Soc., 2002, 124: 2124.
[50] Weber T, Chandrasekaran V, Stamer I, Thygesen M B, Terfort A, Lindhorst T K. Angew. Chem. Int. Ed., 2014, 53: 14583.
[51] Kobayashi H, Friggri A, Koumoto K, Amaike M, Shinkai S, Reinhoudt D N. Org. Lett., 2002, 4: 1423.
[52] Kobayashi H, Koumoto K, Jung J H, Shinkai S. J. Chem. Soc. Perkin Trans. 2, 2002, 1930.
[53] Ogawa Y, Yoshiyama C, Kitaoka T. Langmuir, 2012, 28: 4404.
[54] Clemente M J, Tejedor R M, Romero P, Fitremann J, Oriol L. RSC Adv., 2012, 2: 11419.
[55] Rajaganesh R, Gopal A, Das T M, Ajayaghosh A. Org. Lett., 2012, 14: 748.
[56] Cui J, Liu A, Guan Y, Zheng J, Shen Z, Wan X. Langmuir, 2010, 26: 3615.
[57] Cui J, Zheng Y, Shen Z, Wan X. Langmuir, 2010, 26: 15508.
[58] Cui J, Shen Z, Wan X. Langmuir, 2010, 26: 97.
[59] Štěpánek P, Dukh M, Šaman D, Moravcová J, Knie?o L, Monti D, Venanzi M, Mancini G, Drašar P. Org. Biomol. Chem., 2007, 5: 960.
[60] Monti D, Venanzi M, Gatto E, Mancini G, Sorrenti A, Štěpánek P, Drašar P. New J. Chem., 2008, 32: 2127.
[61] Zheng J, Qiao W, Wan X, Gao J P, Wang Z Y. Chem. Mater., 2008, 20: 6163.
[62] Schmid S, Mena-Osteritz E, Kopyshev A, Bäuerle P. Org. Lett., 2009, 11: 5098.
[63] Pescitelli G, Omar O H, Operamolla A, Farinola G M, Bari L D. Macromolecules, 2012, 45: 9626.
[1] Liangchun Li, Renlin Zheng, Yi Huang, Rongqin Sun. Self-Sorting Assembly in Multicomponent Self-Assembled Low Molecular Weight Hydrogels [J]. Progress in Chemistry, 2023, 35(2): 274-286.
[2] Meng Wang, He Song, Yewen Li. Three Dimensional Self-Assembled Blue Phase Liquid Crystalline Photonic Crystal [J]. Progress in Chemistry, 2022, 34(8): 1734-1747.
[3] Dongxue Han, Xue Jin, Wangen Miao, Tifeng Jiao, Pengfei Duan. Responsiveness of Excited State Chirality Based on Supramolecular Assembly [J]. Progress in Chemistry, 2022, 34(6): 1252-1262.
[4] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[5] Yuling Liu, Tengda Hu, Yilian Li, Yang Lin, Borsali Redouane, Yingjie Liao. Fast Self-Assembly Methods of Block Copolymer Thin Films [J]. Progress in Chemistry, 2022, 34(3): 609-615.
[6] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[7] Bin Li, Ying Yu, Guoxiang Xing, Jinfeng Xing, Wanxing Liu, Tianyong Zhang. Progress in Circularly Polarized Light Emission of Chiral Inorganic Nanomaterials [J]. Progress in Chemistry, 2022, 34(11): 2340-2350.
[8] Wu Qiaomei, Yang Qiyue, Zeng Xianhai, Deng Jiahui, Zhang Liangqing, Qiu Jiarong. Catalytic Conversion of Cellulose-Based Biomass to Diols [J]. Progress in Chemistry, 2022, 34(10): 2173-2189.
[9] Chuxuan Yan, Qinglin Li, Zhengqi Gong, Yingzhi Chen, Luning Wang. Organic Semiconductor Nanostructured Photocatalysts [J]. Progress in Chemistry, 2021, 33(11): 1917-1934.
[10] Yena Feng, Shuhe Liu, Shubo Zhang, Tong Xue, Honglin Zhuang, Anchao Feng. Preparation of SiO2/Polymer Nanocomposites Based on Polymerization-Induced Self-Assembly [J]. Progress in Chemistry, 2021, 33(11): 1953-1963.
[11] Zixuan Wang, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Design, Self-Assembly and Application of DNA-Peptide Hybrid Molecules [J]. Progress in Chemistry, 2020, 32(6): 687-697.
[12] Minghao Zhou, Shuang Jiang, Tianyong Zhang, Yonghong Shi, Xue Jin, Pengfei Duan. Construction and Optoelectrical Properties of Chiral Perovskite Nanomaterials [J]. Progress in Chemistry, 2020, 32(4): 361-370.
[13] Hanyu Zhang, Meng Liu, Xia Wu, Miao Liu, Decai Xiong, Xinshan Ye. Photo-/Electro-Driven Carbohydrate-Based Reactions [J]. Progress in Chemistry, 2020, 32(11): 1804-1823.
[14] Chenghao Zhu, Junliang Zhang. Palladium Catalyzed Heck-Type Reaction of Organic Halides and Alkyl-Alkynes [J]. Progress in Chemistry, 2020, 32(11): 1745-1752.
[15] Kangkang Zhi, Xin Yang. Natural Product Gels and Their Gelators [J]. Progress in Chemistry, 2019, 31(9): 1314-1328.