中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (2/3): 219-231 DOI: 10.7536/PC150311 Previous Articles   Next Articles

• Review and comments •

Organolead Halide Perovskite Solar Cells

Ju Chenggong1,2, Zhang Bao1, Feng Yaqing1,2*   

  1. 1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China;
    2. Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21476162) and the National International S & T Cooperation Foundation of China (No. 2012DFG41980).
PDF ( 2347 ) Cited
Export

EndNote

Ris

BibTeX

Organohalide lead perovskite solar cell is highly efficient and low cost in the fabrication process. It has attracted much attention and been widely investigated all around the world. This review looks back into the history of the organohalide lead perovskite solar cells (PSCs) and gives a brief introduction of the research progress of the PSCs. It emphatically points out the relationship between the components of the perovskite ( A cation,B cation and X anion ) and its photoelectrical properties. We classify the PSCs into three types, namely sensitized PSCs, meso-superstructure PSCs and planar heterojunction PSCs. What's more, we point out the issues concerned the developments of PSCs. The future directions are also indicated. Finally, as a high-efficiency new comer to the solar cell family, the potential benefits on the human society are expected.

Contents
1 Introduction
2 The history of organohalide perovskite solar cells
3 The relationship between the components of the organometal halide and its photoelectrical properties
4 Organolead halide
4.1 Organolead iodide
4.2 Organolead bromide
4.3 Mixture of different organolead halides
5 Hole transporting material layer
6 Different kinds of organolead halide perovskite solar cells
6.1 Non-planar perovskite solar cells
6.2 Planar heterojunction perovskite solar cells
7 Future direction and interests of organolead halide perovskite solar cells
7.1 Organolead halide perovskite material
7.2 Different production process of perovskite solar cells
7.3 HTM layer and counter electrode
7.4 Planar heterojunction perovskite solar cells
7.5 Large-area solar cells
7.6 The mechanism research of the perovskite solar cells
8 Conclusion and outlook

CLC Number: 

[1] (a)李晓慧(Li X H), 范同祥(Fan T X). 化学进展(Progress in Chemistry), 2011, 23(9):1841. (b)杨正龙(Yang Z L), 卜弋龙(Bu Y L), 陈秋云(Chen Q Y). 化学进展(Progress in Chemistry), 2011, 23(12):2607. (c)李承辉(Li C H), 王锴(Wang K), 郑玮(Zheng W), 王致祥(Wang Z X), 刘建(Liu J), 游效曾(You X Z). 化学进展(Progress in Chemistry), 2012, 24(1):8. (d)张会京(Zhang H J), 侯信(Hou X). 化学进展(Progress in Chemistry), 2012, 24(11):2106.
[2] Dale M, Benson S M. Environ. Sci. Technol., 2013, 47:3482.
[3] (a)汤雅芸(Tang Y Y), 梅群波(Mei Q B), 徐志杰(Xu Z J), 凌启淡(Ling Q D). 化学进展(Progress in Chemistry), 2011, 23(9):1915. (b)汤雅芸(Tang Y Y), 梅群波(Mei Q B), 徐志杰(Xu Z J), 凌启淡(Ling Q D). 化学进展(Progress in Chemistry), 2011, 23(9):1915. (c)王桂强(Wang G Q), 段彦栋(Duan Y D), 张娟(Zhang J), 林原(Lin Y), 禚淑萍(Zhuo S P). 化学进展(Progress in Chemistry), 2014, 26(7):1255. (d) Oregan B, Grätzel M. Nature, 1991, 353:737. (e) Xue X, Zhang W, Zhang N, Ju C, Peng X, Yang Y, Liang Y, Feng Y, Zhang B. RSC Adv., 2014, 4:8894. (f) Zeng Z, Zhang B, Li C, Peng X, Liu X, Meng S, Feng Y. Dyes Pigments, 2014, 100:278.
[4] Kazim S, Nazeeruddin M K, Grätzel M, Ahmad S. Angew. Chem. Int. Ed., 2014, 53:2812.
[5] (a) Kang M G, Park H J, Ahn S H. Xu T, Guo L J. IEEE J. Sel. Top. Quant., 2010, 16:1807. (b) Paul A L. Organic Thin Films for Photonic Applications. Washington DC:Kent, 2010. 185. (c) Lane P A. Self-Organized Organic Semiconductors. NJ:New York, 2011. 225. (d) Zhou H, Yang L, You W. Macromolecules, 2012, 45:607. (e) Scharber M C, Sariciftci N S. Prog. Polym. Sci., 2013, 38:1929. (f) Heeger A J. Adv. Mater., 2014, 26:10. (g) Yang X, Uddin A. Renew. Sust. Energ. Rev., 2014, 30:324.
[6] Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Grätzel M, Park N G. Sci. Rep., 2012, 2:591.
[7] Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J. Science, 2012, 338:643.
[8] Noh J H, Im S H, Heo J H, Mandal T N, Seok S I. Nano Lett., 2013, 13:1764.
[9] (a) Wang J T, Ball J M, Barea E M, Abate A, Alexander-Webber J A, Huang J, Saliba M, Mora-Sero I, Bisquert J, Snaith H J, Nicholas R J. Nano Lett., 2014, 14:724. (b) Wojciechowski K, Saliba M, Leijtens T, Abate A, Snaith H J. Energ. Environ. Sci., 2014, 7:1142.
[10] Jeon N J, Lee H G, Kim Y C, Seo J, Noh J H, Lee J, Seok S I. J. Am. Chem. Soc., 2014, 136:7837.
[11] Zhou H, Chen Q, Li G, Luo S, Song T, Duan H S, Hong Z, You J, Liu Y, Yang Y. Science, 2014, 345:542.
[12] Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K. Grätzel M. Nature, 2013, 499:316.
[13] .http://www.nrel.gov/ncpv/images/efficiency_chart.jpg.
[14] 2013 Runners-Up. Newcomer Juices up the Race to Harness Sunlight. Science, 2013, 342:1438.
[15] (a) Moller C K. Nature, 1957, 180:981. (b) Moller C K. Nature, 1958, 182:1436.
[16] Kagan C R, Mitzi D B, Dimitrakopoulos C D. Science, 1999, 286:945.
[17] Burroughes J H, Bradley D D C, Brown A R, Marks R N, Mackay K, Friend R H, Burns P L, Holmes A B. Nature, 1990, 347:539.
[18] Kojima A, Teshima K, Shirai Y, Miyasaka T. J. Am. Chem. Soc., 2009, 131:6050.
[19] Park N G. J. Phys. Chem. Lett., 2013, 4:2423.
[20] Im J H, Lee C R, Lee J W, Park S W, Park N G. Nanoscale, 2011, 3:4088.
[21] Liu M, Johnston M B, Snaith H J. Nature, 2013, 501:395.
[22] Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Grätzel M, Han H. Science, 2014, 345:295.
[23] Wei Z, Chen H, Yan K, Yang S. Angew. Chem. Int. Ed., 2014, 53:13239.
[24] Liu D, Kelly T L. Nat. Photonics, 2014, 8:133.
[25] Zhou H, Chen Q, Li G, Luo S, Song T, Duan H S, Hong Z, You J, Liu Y, Yang Y. Science, 2014, 345:542.
[26] Tress W, Marinova N, Moehl T, Zakeeruddin S M, Nazeeruddin M K, Grätzel M. Energ. Environ. Sci., 2015, 8:995.
[27] Xiao Z, Yuan Y, Shao Y, Wang Q, Dong Q, Bi C, Sharma P, Gruverman A, Huang J. Nat. Mater., 2015, 14:193.
[28] Eames C, Frost J M, Barnes P R, O'Regan B C, Walsh A, Islam M S. Nat. Commun., 2015, 6:7497.
[29] Abate A, Saliba M, Hollman D J, Stranks S D, Wojciechowski K, Avolio R, Grancini G, Petrozza A, Snaith H J. Nano Lett., 2014, 14:3247.
[30] Yin W J, Shi T, Yan Y. Appl. Phys. Lett., 2014, 104:063903.
[31] Kim J, Lee S H, Lee J H, Hong K H. J. Phys. Chem. Lett., 2014, 5:1312.
[32] Shao Y, Xiao Z, Bi C, Yuan Y, Huang J. Nat. Commun., 2014, 5:DOI:10.1038/ncomms6784.
[33] Heo J H, Song D H, Han H J, Kim S Y, Kim J H, Kim D, Shin H W, Ahn T K, Wolf C, Lee T W, Im S H. Adv. Mater., 2015, 27:3424.
[34] Dualeh A, Moehl T, Tétreault N, Teuscher J, Gao P, Nazeeruddin M K, Grätzel M. ACS Nano, 2013, 8:362.
[35] Kim H S, Park N G. J. Phys. Chem. Lett., 2014, 5:2927.
[36] Zimmermann E, Ehrenreich P, Pfadler T, Dorman J A, Weickert J, Schmidt-Mende L. Nat. Photonics, 2014, 8:669.
[37] Green M A, Bein T. Nat. Mater., 2015, 14:559.
[38] Helen M. Nature, 1945, 155:484.
[39] Gao P, Grätzel M, Nazeeruddin M K. Energ. Environ. Sci., 2014, 7:2448.
[40] Bhalla A S, Guo R, Roy R. Mater. Res. Innov., 2000, 4:3. \
[41] Koka S, Shrivastava K N. Solid State Commun., 1991, 80:933.
[42] Mitzi D B. Chem. Mater., 1996, 8:791.
[43] Papavassiliou G C, Koutselas I B. Synthetic Met., 1995, 71:1713.
[44] Calabrese J, Jones N L, Harlow R L, Herron N, Thorn D L, Wang Y. J. Am. Chem. Soc., 1991, 113:2328.
[45] Billing D G, Lemmerer A. CrystEngComm, 2007, 9:236.
[46] Tanaka K, Takahashi T, Ban T, Kondo T, Uchida K, Miura N. Solid State Commun., 2003, 127:619.
[47] Im J H, Chung J, Kim S J, Park N G. Nanoscale Res. Lett., 2012, 7:353.
[48] Shockley W, Queisser H J. J. Appl. Phys., 1961, 32:510.
[49] Ogomi Y, Morita A, Tsukamoto S, Saitho T, Fujikawa N, Shen Q, Toyoda T, Yoshino K, Pandey S S, Ma T, Hayase S. J. Phys. Chem. Lett., 2014, 5:1004.
[50] Knutson J L, Martin J D, Mitzi D B. Inorg. Chem., 2005, 44:4699.
[51] Eng H W, Barnes P W, Auer B M, Woodward P M. J. Solid State Chem., 2003, 175:94.
[52] Etourneau J, Portier J, Ménil F. J. Alloy Compd., 1992, 188:1.
[53] Jansen M, Letschert H P. Nature, 2000, 404:980.
[54] Attfield J P. Int. J. Inorg. Mater., 2001, 3:1147.
[55] Kulkarni S A, Baikie T, Boix P P, Yantara N, Mathews N, Mhaisalkar S. J. Mater. Chem. A, 2014, 2:9221.
[56] Mitzi D B. Progress in Organic Chemistry.NJ:New York. 2007. 1.
[57] Pellet N, Gao P, Gregori G, Yang T Y, Nazeeruddin M K, Maier J, Grätzel M. Angew. Chem. Int. Ed., 2014, 53:3151.
[58] Thiele G, Rotter H W, Schmidt K D Z. Anorg. Allg. Chem. 1987, 545:148.
[59] Mosconi E, Amat A, Nazeeruddin M K, Grätzel M, de Angelis F. J. Phys. Chem. C, 2013, 117:13902.
[60] Onoda Y N, Matsuo T, Suga H. J. Phys. Chem. Solids, 1992, 53:935.
[61] Huang L Y, Lambrecht W R L. Phys. Rev. B, 2013, 88:165203.
[62] Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M, Snaith H J. Energ. Environ. Sci., 2014, 7:982.
[63] Kitazawa N, Watanabe Y, Nakamura Y. J. Mater. Sci., 2002, 37:3585.
[64] Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M, Snaith H J. Energ. Environ. Sci., 2014, 7:982.
[65] Kim H S, Lee J W, Yantara N, Boix P P, Kulkarni S A, Mhaisalkar S, Grätzel M, Park N G. Nano Lett., 2013, 13:2412.
[66] Stoumpos C C, Malliakas C D, Kanatzidis M G. Inorg. Chem., 2013, 52:9019.
[67] Pang S, Hu H, Zhang J, Lv S, Yu Y, Wei F, Qin T, Xu H, Liu Z, Cui G. Chem. Mater., 2014, 26:1485.
[68] Lee J W, Seol D J, Cho A N, Park N G. Adv. Mater., 2014, 26:4991.
[69] Edri E, Kirmayer S, Cahen D, Hodes G. J. Phys. Chem. Lett., 2013, 4:897.
[70] Noh J H, Im S H, Heo J H, Mandal T N, Seok S I. Nano Lett., 2013, 13:1764.
[71] Cai B, Xing Y, Yang Z, Zhang W H, Qi J. Energ. Environ. Sci., 2013, 6:1480.
[72] Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J, Leijtens T, Herz L M, Petrozza A, Snaith H J. Science, 2013, 342:341.
[73] Colella S, Mosconi E, Fedeli P, Listorti A, Gazza F, Orlandi F, Ferro P, Besagni T, Rizzo A, Calestani G, Gigli G, de Angelis F, Mosca R. Chem. Mater., 2013, 25:4613.
[74] Wehrenfennig C, Eperon G E, Johnston M B, Snaith H J, Herz L M. Adv. Mater., 2014, 26:1584.
[75] Colella S, Mosconi E, Pellegrino G, Alberti A, Guerra V L P, Masi S, Listorti A, Rizzo A, Condorelli G G, de Angelis F, Gigli G. J. Phys. Chem. Lett., 2014, 5:3532.
[76] Grancini G, Marras S, Prato M, Giannini C, Quarti C, de Angelis F, de Bastiani M, Eperon G E, Snaith H J, Manna L, Petrozza A. J. Phys. Chem. Lett., 2014, 5:3836.
[77] Qiu J, Qiu Y, Yan K, Zhong M, Mu C, Yan H, Yang S. Nanoscale, 2013, 5:3245.
[78] Yella A, Lee H W, Tsao H N, Yi C, Chandiran A K, Nazeeruddin M K, Diau E W G, Yeh C Y, Zakeeruddin S M, Grätzel M. Science, 2011, 334:629.
[79] Wang J, Wang S, Li X, Zhu L, Meng Q B, Xiao Y, Li D. Chem. Commun., 2014, 50:5829.
[80] Li H, Fu K, Hagfeldt A, Grätzel M, Mhaisalkar S G, Grimsdale A C. Angew. Chem. Int. Ed., 2014, 53:4085.
[81] Liu J, Wang Y Z, Qin C, Yang X, Yasuda T, Islam A, Zhang K, Peng W, Han L, Chen W. Energ. Environ. Sci., 2014, 7:2963.
[82] Qin P, Paek S, Dar M I, Pellet N, Ko J, Grätzel M, Nazeeruddin M K. J. Am. Chem. Soc., 2014, 136:8516.
[83] Christians J A, Fung R C, Kamat P V. J. Am. Chem. Soc., 2014, 136:758.
[84] Qin P, Tanaka S, Ito S, Tetreault N, Manabe K, Nishino H, Nazeeruddin M K, Grätzel M. Nat. Commun., 2014, 5:3834.
[85] Bi D, Moon S J, Haggman L, Boschloo G, Yang L, Johansson E M J, Nazeeruddin M K, Grätzel M, Hagfeldt A. RSC Adv., 2013, 3:18762.
[86] Dar M I, Ramos F J, Xue Z, Liu B, Ahmad S, Shivashankar S A, Nazeeruddin M K, Grätzel M. Chem. Mater., 2014, 26:4675.
[87] Zhang W, Saliba M, Stranks S D, Sun Y, Shi X, Wiesner U, Snaith H J. Nano Lett., 2013, 13:4505.
[88] Ball J M, Lee M M. Hey A, Snaith H J. Energ. Environ. Sci., 2013, 6:1739.
[89] Kim H S, Mora-Sero I, Gonzalez-Pedro V, Fabregat-Santiago F, Juarez-Perez E J, Park N G, Bisquert J. Nat. Commun., 2013, 4:2242.
[90] Hwang S H, Roh J, Lee J, Ryu J, Yun J, Jang J. J. Mater. Chem. A, 2014, 2:16429.
[91] Docampo P, Ball J M, Darwich M, Eperon G E, Snaith H J. Nat.Commun., 2013, 4:2761.
[92] Jeng J Y, Chiang Y F, Lee M H, Peng S R, Guo T F, Chen P, Wen T C. Adv. Mater., 2013, 25:3727.
[93] Bai S, Wu Z, Wu X, Jin Y, Zhao N, Chen Z, Mei Q, Wang X, Ye Z, Song T, Liu R, Lee S T, Sun B. Nano Res., 2014, 7:1749.
[94] Chiang C H, Tseng Z L, Wu C G. J. Mater. Chem. A, 2014, 2:15897.
[95] Chen C, Li C, Li F, Wu F, Tan F, Zhai Y, Zhang W. Nanoscale Res. Lett., 2014, 9:457.
[96] Ku Z, Rong Y, Xu M, Liu T, Han H. Sci. Rep., 2013, 3:3132.
[97] Liang P W, Liao C Y, Chueh C C, Zuo F, Williams S T, Xin X K, Lin J, Jen A K Y. Adv. Mater., 2014, 26:3748.
[98] Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J, Leijtens T, Herz L M, Petrozza A, Snaith H J. Science, 2013, 342:341.
[99] Chen Q, Zhou H, Hong Z, Luo S, Duan H S, Wang H H, Liu Y, Li G, Yang Y. J. Am. Chem. Soc., 2014, 136:622.
[100] Jeon Y J, Lee S, Kang R, Kim J E, Yeo J S, Lee S H, Kim S S, Yun J M, Kim D Y. Sci. Rep., 2014, 4:1.
[101] Hu Q, Wu J, Jiang C, Liu T, Que X, Zhu R, Gong Q. ACS Nano, 2014, 8:10161.
[102] Zhang H, Azimi H, Hou Y, Ameri T, Przybilla T, Spiecker E, Kraft M, Scherf U, Brabec C. J. Chem. Mater., 2014, 26:5190.
[103] Hau S K, Yip H L, Jen A K Y. Polym. Rev., 2010, 50:474.
[104] Xiao Z, Bi C, Shao Y, Dong Q, Wang Q, Yuan Y, Wang C, Gao Y, Huang J. Energ. Environ. Sci., 2014, 7:2619.
[105] Jeng J Y, Chiang Y F, Lee M H, Peng S R, Guo T F, Chen P, Wen T C. Adv. Mater., 2013, 25:3727.
[106] Chiang Y F, Jeng J Y, Lee M H, Peng S R, Chen P, Guo T F, Wen T C, Hsu Y J, Hsu C M. Phys. Chem. Chem. Phys., 2014, 16:6033.
[107] Jeng J Y, Chen K C, Chiang T Y, Lin P Y, Tsai T D, Chang Y C, Guo T F, Chen P, Wen T C, Hsu Y J. Adv. Mater., 2014, 26:4107.
[108] Chiang Y F, Jeng J Y, Lee M H, Peng S R, Chen P, Guo T F, Wen T C, Hsu Y J, Hsu C M. Phys. Chem. Chem. Phys., 2014, 16:6033.
[109] Giorgi G, Fujisawa J I, Segawa H, Yamashita K. J. Phys. Chem. Lett., 2013, 4:4213.
[110] Pang S, Hu H, Zhang J, Lv S, Yu Y, Wei F, Qin T, Xu H, Liu Z, Cui G. Chem. Mater., 2014, 26:1485.
[111] Ku Z, Rong Y, Xu M, Liu T, Han H. Sci. Rep., 2013, 3:3132.
[112] Carnie M J, Charbonneau C, Davies M L, Troughton J, Watson T M, Wojciechowski K, Snaith H, Worsley D A. Chem. Commun. (Camb)., 2013, 49:7893.
[113] Subbiah A S, Halder A, Ghosh S, Mahuli N, Hodes G, Sarkar S K. J. Phys. Chem. Lett., 2014, 5:1748.
[114] Shi J J, Dong J, Lv S T, Xu Y Z, Zhu L F, Xiao J Y, Xu X, Wu H J, Li D M, Luo Y H, Meng Q B. Appl. Phys. Lett., 2014, 104:063901.
[115] Aharon S, Gamliel S, Cohen B E, Etgar L. Phys. Chem. Chem. Phys., 2014, 16:10512.
[146] Etgar L, Gao P, Xue Z, Peng Q, Chandiran A K, Liu B, Nazeeruddin M K, Grätzel M. J. Am. Chem. Soc., 2012, 134:17396.
[117] Chen Q, Zhou H, Hong Z, Luo S, Duan H S, Wang H H, Liu Y, Li G, Yang Y. J. Am. Chem. Soc., 2014, 136:622.
[118] He M, Zheng D, Wang M, Lin C, Lin Z. J. Mater. Chem. A, 2014, 2:5994.
[119] 范斌(Fan B),白华(Bai H),蔡玉龙(Cai Y L),陈凯武(Chen K W),寇旭(Kou X),梁禄生(Liang L S),王保增(Wang B Z).中国化学年会第29届学术年会:有机光伏(The 25th CCS Congress:Organic photovoltaics).北京(Beijing), 2014.
[120] Li W, Li J, Wang L, Niu G, Gao R, Qiu Y. J. Mater. Chem. A, 2013, 1:11735.
[121] Leijtens T, Eperon G E, Pathak S, Abate A, Lee M M, Snaith H J. Nat. Commun., 2013, 4:2885.
[122] Matteocci F, Razza S, di Giacomo F, Casaluci S, Mincuzzi G, Brown T M, D'Epifanio A, Licoccia S, di Carlo A. Phys. Chem. Chem. Phys., 2014, 16:3918.
[123] Kwon Y S, Lim J, Yun H J, Kim Y H, Park T. Energ. Environ. Sci., 2014, 7:1454.
[124] Kang S M, Ahn N, Lee J W, Choi M, Park N G. J. Mater. Chem. A, 2014, 2:20017.
[125] Roiati V, Colella S, Lerario G, de Marco L, Rizzo A, Listorti A, Gigli G. Energ. Environ. Sci., 2014, 7:1889.
[126] Grätzel M. Nat. Mater., 2014, 13:838.
[127] Gamliel S, Etgar L. RSC Adv., 2014, 4:29012.
[128] Sanchez R S, Gonzalez-Pedro V, Lee J W, Park N G, Kang Y S, Mora-Sero I, Bisquert J. J. Phys. Chem. Lett., 2014, 5:2357.
[129] Kutes Y, Ye L, Zhou Y, Pang S, Huey B D, Padture N P. J. Phys. Chem. Lett., 2014, 5:3335.
[130] Gottesman R, Haltzi E, Gouda L, Tirosh S, Bouhadana Y, Zaban A, Mosconi E, de Angelis F. J. Phys. Chem. Lett., 2014, 5:2662.
[131] Li W, Li J, Wang L, Niu G, Gao R, Qiu Y. J. Mater. Chem. A, 2013, 1:11735.
[132] Xing G, Mathews N, Lim S S, Yantara N, Liu X, Sabba D, Grätzel M, Mhaisalkar S, Sum T C. Nat. Mater., 2014, 13:476.
[133] Green M A, Emery K, Hishikawa Y, Warta W D, Ewan D. Prog Photovolt.Res.Appl., 2014, 22:1.
[134] Habisreutinger S N, Leijtens T, Eperon G E, Stranks S D,Nicholas R J, Snaith H J. Nano Lett., 2014. 14:5561.
[135] Dong X, Fang X, Lv M, Lin B, Zhang S, Ding J, Yuan N.J. Mater. Chem. A, 2015, 3:5360.
[136] Han Y, Meyer S, Dkhissi Y, Weber K, Pringle J M, Bach U, Spiccia L, Cheng Y B. J. Mater. Chem. A, 2015, 3:8139.
[137] Hailegnaw B, Kirmayer S, Edri E, Hodes G, Cahen D. J. Phys. Chem. Lett., 2015, 6:1543.
[138] Hao F, Stoumpos C C, Chang R P H, Kanatzidis M G. J. Am. Chem. Soc., 2014, 136:8094.
[139] Hao F, Stoumpos C C, Cao D H, Chang R P H, Kanatzidis M G. Nat. Photonics, 2014, 8:489.
[140] Ogomi Y, Morita A, Tsukamoto S, Saitho T, Fujikawa N, Shen Q, Toyoda T, Yoshino K, Pandey S S, Ma T, Hayase S. J. Phys. Chem. Lett., 2014, 5:1004.
[141] Kim B J, Kim D H, Lee Y Y, Shin H W, Han G S, Hong J S, Mahmood K, Ahn T K, Joo Y C, Hong K S, Park N G, Lee S, Jung H S. Energ. Environ. Sci., 2015, 8:916.
[1] Qiyao Guo, Jialong Duan, Yuanyuan Zhao, Qingwei Zhou, Qunwei Tang. Hybrid Energy Harvesting Solar Cells―From Principles to Applications [J]. Progress in Chemistry, 2023, 35(2): 318-329.
[2] Chao Ji, Tuo Li, Xiaofeng Zou, Lu Zhang, Chunjun Liang. Two-Dimensional Perovskite Photovoltaic Devices [J]. Progress in Chemistry, 2022, 34(9): 2063-2080.
[3] Senlin Tang, Huan Gao, Ying Peng, Mingguang Li, Runfeng Chen, Wei Huang. Non-Radiative Recombination Losses and Regulation Strategies of Perovskite Solar Cells [J]. Progress in Chemistry, 2022, 34(8): 1706-1722.
[4] Qianqian Fan, Lu Wen, Jianzhong Ma. Lead-Free Halide Perovskite Nanocrystals: A New Generation of Photocatalytic Materials [J]. Progress in Chemistry, 2022, 34(8): 1809-1814.
[5] Yang Zhang, Min Zhang, Hailei Zhao. Double Perovskite Material as Anode for Solid Oxide Fuel Cells [J]. Progress in Chemistry, 2022, 34(2): 272-284.
[6] Yuxaun Du, Tao Jiang, Meijia Chang, Haojie Rong, Huanhuan Gao, Yu Shang. Research Progress of Materials and Devices for Organic Photovoltaics Based on Non-Fused Ring Electron Acceptors [J]. Progress in Chemistry, 2022, 34(12): 2715-2728.
[7] Zehao Hu, Ting Chen, Yanqiao Xu, Weihui Jiang, Zhixiang Xie. Surface Coating Strategy: From Improving the Luminescence Stability to Lighting and Display Applications of All-Inorganic Cesium Lead Halide Perovskite Nanocrystals [J]. Progress in Chemistry, 2021, 33(9): 1614-1626.
[8] Junxian Hong, Xun Zhu, Lei Ge, Mingchuan Xu, Wenzhen Lv, Runfeng Chen. The Synthesis and Applications of CsPbX3(X = Cl, Br, I) Nanocrystals [J]. Progress in Chemistry, 2021, 33(8): 1362-1377.
[9] Ying Yang, Shupeng Ma, Yuan Luo, Feiyu Lin, Liu Zhu, Xueyi Guo. Multidimensional CsPbX3 Inorganic Perovskite Materials: Synthesis and Solar Cells Application [J]. Progress in Chemistry, 2021, 33(5): 779-801.
[10] Ying Yang, Yuan Luo, Shupeng Ma, Congtan Zhu, Liu Zhu, Xueyi Guo. Advances of Electron Transport Materials in Perovskite Solar Cells: Synthesis and Application [J]. Progress in Chemistry, 2021, 33(2): 281-302.
[11] Xiang Xu, Kun Li, Qingya Wei, Jun Yuan, Yingping Zou. Organic Solar Cells Based on Non-Fullerene Small Molecular Acceptor Y6 [J]. Progress in Chemistry, 2021, 33(2): 165-178.
[12] Xiaojing Li, Yonghong Li, Fuhang Yu, Weiyan Qi, Ye Jiang, Qianwen Lu. Catalysts for Removal of Xylene by Catalytic Oxidation [J]. Progress in Chemistry, 2021, 33(12): 2203-2214.
[13] Sha Tan, Jianzhong Ma, Yan Zong. Preparation and Application of Poly(3,4-ethylenedioxythiophene)∶Poly(4-styrenesulfonate)/Inorganic Nanocomposites [J]. Progress in Chemistry, 2021, 33(10): 1841-1855.
[14] Jingjing Xiao, Mu Wang, Weijie Zhang, Xiuying Zhao, Anchao Feng, Liqun Zhang. Preparation and Application of Lead Halide Perovskite-Polymer Composites [J]. Progress in Chemistry, 2021, 33(10): 1731-1740.
[15] Huirong Peng, Molang Cai, Shuang Ma, Xiaoqiang Shi, Xuepeng Liu, Songyuan Dai. Fabrication and Stability of All-Inorganic Perovskite Solar Cells [J]. Progress in Chemistry, 2021, 33(1): 136-150.
Viewed
Full text


Abstract

Organolead Halide Perovskite Solar Cells