中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (8): 1102-1109 DOI: 10.7536/PC150232 Previous Articles   Next Articles

Special Issue: 酶化学

Rational Design of Artificial Hydrolases in Protein Scaffolds

Zhao Yuan1, Zeng Jin1, Lin Yingwu*1,2   

  1. 1. School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China;
    2. Laboratory of Protein Structure and Function, University of South China, Hengyang 421001, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 31370812), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, and the Natural Science Founds for Distinguished Young Scholar of Hunan Province (No. 2015JJ1012).
PDF ( 1181 ) Cited
Export

EndNote

Ris

BibTeX

Proteins are an important part of life, of which enzymes perform vital roles in biological systems. Rational protein design is a key approach for investigating the structure and function relationship of enzymes. This review summarizes the progresses in rational design and functional study of artificial hydrolases in protein scaffolds, including reuse of natural proteins, reconstruction of natural proteins, molecular design based on 3-α-helix, 4-α-helix or zinc-finger proteins, and fine-tuning the hydrolysis activity of heme proteins such as cytochrome b5 and myoglobin mutants. It illustrates the basic idea and approaches of artificial hydrolase design, which provides valuable clues for rational construction of artificial hydrolase or other enzymes. The progress in rational design of artificial hydrolases not only enriches our understanding of the structure-property-reactivity-function relationship of native enzymes, but also enhances our ability to construct artificial enzymes with advanced functions.

Contents
1 Introduction
2 Mechanisms of hydrolases
3 Hydrolases containing no metal ions
3.1 Reuse of natural proteins
3.2 Reconstruction of natural proteins
4 Hydrolases containing metal ions
4.1 Molecular design based on 3-α-helix
4.2 Molecular design based on 4-α-helix
4.3 Molecular design based on zinc-finger protein
5 Hydrolases containing metal complex
5.1 Explore hydrolysis activity of heme proteins
5.2 Tune hydrolysis activity of heme proteins
6 Conclusion and outlook

CLC Number: 

[1] Schmid A, Dordick J S, Hauer B, Kiener A, Wubbolts M, Witholt B. Nature, 2001, 409(6817): 258.
[2] 林英武(Lin Y W),黄仲贤(Huang Z X). 化学进展(Progress in Chemistry), 2006, 18(6): 794.
[3] 林英武(Lin Y W). 化学进展(Progress in Chemistry), 2010, 22(6): 1203.
[4] 林英武(Lin Y W). 化学进展(Progress in Chemistry), 2012, 24(4): 589.
[5] 林英武(Lin Y W). 化学进展(Progress in Chemistry), 2012, 24(5): 784.
[6] 林英武(Lin Y W). 化学进展(Progress in Chemistry), 2014, 26(6): 987.
[7] Lin Y W, Sawyer E B, Wang J. Chem. Asian J., 2013, 8: 2534.
[8] Lin Y W, Wang J. J. Inorg. Biochem., 2013, 129(12): 162.
[9] Lin Y W , Wang J Y, Lu Y. Sci. China Chem., 2014, 57(3): 346.
[10] Lu Y, Yeung N, Sieracki N, Marshall N M. Nature, 2009, 460: 855.
[11] Zanghellini A. Curr. Opin. Biotechnol., 2014, 29: 132.
[12] Nanda V, Koder R L. Nat. Chem., 2010, 2: 15.
[13] Du J, Sono M, Dawson J H. Coord. Chem. Rev., 2011, 255: 700.
[14] Reetz M T. Chem. Rec., 2012, 12: 391.
[15] Ueno T, Tabe H, Tanaka Y. Chem. Asian J., 2013, 8: 1646.
[16] Farid T A, Kodali G, Solomon L A, Lichtenstein B R, Sheehan M M, Fry B A, Bialas C, Ennist N M, Siedlecki J A, Zhao Z, Stetz M A, Valentine K G, Anderson J L, Wand A J, Discher B M, Moser C C, Dutton P L. Nat. Chem. Biol., 2013, 9: 826.
[17] Armstrong C T, Watkins D W, Anderson J L. Dalton Trans,. 2013, 42(9): 3136.
[18] Höcker B. Curr. Opin. Struct. Biol., 2014, 27C: 56.
[19] Petrik I D, Liu J, Lu Y. Curr. Opin. Chem. Biol., 2014, 19: 67.
[20] Watkins D W, Armstrong C T, Anderson J L. Curr. Opin. Chem. Biol., 2014, 19: 90.
[21] Oohora K, Hayashi T. Curr. Opin. Chem. Biol., 2014, 19: 154.
[22] Dürrenberger M, Ward T R. Curr. Opin. Chem. Biol., 2014, 19: 99.
[23] Shoji O, Watanabe Y. J. Biol. Inorg. Chem., 2014, 19: 529.
[24] Reig A J, Pires M M, Snyder R A, Wu Y, Jo H, Kulp D W, Butch S E, Calhoun J R, Szyperski T, Solomon E I, DeGrado W F. Nat. Chem., 2012, 4: 900.
[25] Oohora K, Kihira Y, Mizohata E, Inoue T, Hayashi T. J. Am. Chem. Soc., 2013, 135: 17282.
[26] Yeung N, Lin Y W, Gao Y G, Zhao X, Russell B S, Lei L, Miner K D, Robinson H, Lu Y. Nature, 2009, 462: 1079.
[27] Lin Y W, Yeung N, Gao Y G, Miner K D, Tian S, Robinson H, Lu Y. Proc. Natl. Acad. Sci. U. S. A., 2010, 107: 8581.
[28] Lin Y W, Yeung N, Gao Y G, Miner K D, Lei L, Robinson H, Lu Y. J. Am. Chem. Soc., 2010, 132: 9970.
[29] Tegoni M, Yu F, Bersellini M, Penner-Hahn J E, Pecoraro V L. Proc. Natl. Acad. Sci. U. S. A., 2012, 109: 21234.
[30] Miner K D, Mukherjee A, Gao Y G, Null E L, Petrik I D, Zhao X, Yeung N, Robinson H, Lu Y. Angew. Chem. Int. Ed., 2012, 51(23): 5589.
[31] Liu X, Yu Y, Hu C, Zhang W, Lu Y, Wang J. Angew. Chem. Int. Ed., 2012, 51(18):4312.
[32] Zhou Q, Hu M, Zhang W, Jiang L, Perrett S, Zhou J, Wang J. Angew. Chem. Int. Ed., 2013, 52(4): 1203.
[33] Bhagi-Damodaran A, Petrik I D, Marshall N M, Robinson H, Lu Y. J. Am. Chem. Soc., 2014, 136(34): 11882.
[34] Hu C, Chan S I, Sawyer E B, Yu Y, Wang J. Chem. Soc. Rev., 2014, 43(18): 6498.
[35] Yu F, Cangelosi V M, Zastrow M L, Tegoni M, Plegaria J S, Tebo A G, Mocny C S, Ruckthong L, Qayyum H, Pecoraro V L. Chem. Rev., 2014, 114(7): 3495.
[36] Matsuo T, Hirota S. Bioorg. Med. Chem., 2014, 22(20): 5638.
[37] Tebo A G, Pecoraro V L. Curr. Opin. Chem. Biol., 2015: 25C: 65.
[38] Pordea A. Curr. Opin. Chem. Biol., 2015, 25C: 124.
[39] Lin Y W, Nagao S, Zhang M, Shomura Y, Higuchi Y, Hirota S. Angew. Chem. Int. Ed., 2015, 54(2): 511.
[40] Zastrow M L, Peacock A F A., Stuckey J A, Pecoraro VL. Nat. Chem., 2012, 4(2): 118.
[41] Zastrow M L, Pecoraro V L. J. Am. Chem. Soc., 2013, 135(15): 5895.
[42] Zastrow M L, Pecoraro V L. Coord. Chem. Rev., 2013, 257: 2565.
[43] Zastrow M L, Pecoraro V L. Biochemistry, 2014, 53(6): 957.
[44] Cangelosi V M, Deb A, Penner-Hahn J E, Pecoraro V L. Angew. Chem. Int. Ed., 2014, 53(30):7900.
[45] Jochens H, Hesseler M, Stiba K, Padhi S K, Kazlauskas R J, Bornscheuer U T. Chembiochem, 2011, 12(10): 1508.
[46] Zemel H, Plaines D. US4764464-A, 1988.
[47] Nedrud D M, Lin H, Lopez G, Padhi S K, Legatt G A, Kaz-Lauskas R J. Chem. Sci., 2014, 5(11): 4265.
[48] Zhou X, Gao L, Yang G, Liu D, Bai A, Li B, Deng Z, Feng Y. ChemBioChem., 2015,16(3): 455.
[49] Chen Q, Luan Z J, Cheng X, Xu J H. Biochemistry, 2015, 54(9):1841.
[50] Qian Z, Fields C J, Yu Y, Lutz S. Biotechnol. J., 2007, 2: 192.
[51] Kourist R, Jochens H, Bartsch S, Kuipers R, Padhi S K, Gall M, Böttcher D, Joosten H J, Bornscheuer U T. Chembiochem., 2010,11(12):1635.
[52] Bolon D N, Mayo S L. Proc. Natl. Acad. Sci. U. S. A., 2001, 98(25): 14274.
[53] Gomis-Rüth F X. Crit. Rev. Biochem. Mol. Biol., 2008, 43(5):319.
[54] Sandal M, Paltrinieri D, Carloni P, Musiani F, Giorgetti A. Curr. Protein Pept. Sci., 2013, 14(8): 650.
[55] Jaitovich A A, Bertorello A M. Semin. Nephrol. 2006, 26(5): 386.
[56] Luan Y, Xu W. Curr. Med. Chem., 2007,14(6): 639.
[57] Fernandes C A, Borges R J, Lomonte B, Fontes M R. Biochim. Biophys. Acta., 2014, 1844(12): 2265.
[58] Kaplan J, DeGrado W.F. Proc. Natl. Acad. Sci. U. S .A., 2004, 101: 11566.
[59] Cochran F V, Wu S P, Wang W, Nanda V, Saven J G, Therien M J, DeGrado W F. J. Am. Chem. Soc., 2005, 127: 1346.
[60] Calhoun J R, Nastri F, Maglio O, Pavone V, Lombardi A, DeGrado W F. Biopolymers, 2005, 80: 264.
[61] Calhoun J R, Liu W, Spiegel K, Dal Peraro M, Klein ML, Valentine K G, Wand A J, DeGrado W F. Structure, 2008, 16: 210.
[62] Fry H C, Lehmann A, Saven J G, DeGrado W F, Therien M J. J. Am. Chem. Soc., 2010, 132:3997.
[63] Fry H C, Lehmann A, Sinks LE, Asselberghs I, Tronin A, Krishnan V, Blasie J K, Clays K, Degrado W F, Saven J G, Therien M J. J. Am. Chem. Soc., 2013, 135: 13914.
[64] Der B S, Edwards D R, Kuhlman B. Biochemistry, 2012, 51(18): 3933.
[65] Maret W. J. Inorg. Biochem., 2012,111: 110.
[66] Srivastava K R, Durani S. PloS ONE, 2014, 9(5): e96234.
[67] Wang W H, Wang Y H, Lu J X, Wang J H, Xie Y, Huang Z X. Chem. Lett., 2002, 674.
[68] Wang W H, Lu J X, Yao P, Xie Y, Huang Z X. Protein Eng., 2003,16(12): 1047.
[69] Lin Y W, You X X, Chen L S, Wu Y M. Chem. Lett., 2012, 41: 1574.
[70] Sen S, Bose T, Roy A, Chakraborti A S. Mol. Cell Biochem., 2007, 301: 251.
[71] You Y, Liu F, Du K J, Wen G B, Lin Y W. J. Mol. Model., 2014, 20(7):2358.
[72] Sun M H, Li W, Liu J H, Wen G B, Tan X, Lin Y W. RSC Adv., 2013, 3: 9337.
[73] Du J F, Li W, Li L, Wen G B, Lin Y W, Tan X. ChemistryOpen, 2015, 4:99.
[74] Zeng J, Zhao Y, Li W, Tan X, Wen G B, Lin Y W. J. Mol. Catal. B: Enzym, 2015, 111(1):9.
[75] Yan D J, Li W, Xiang Y, Wen G B, Lin Y W, Tan X. Chembiochem., 2015, 16(1): 47.
[76] Lin Y W. Biochim Biophys Acta. 2015, 1854(8): 844.
[77] Lin Y W , Dong S S, Liu J H, Nie C M, Wen G B. J. Mol. Catal. B: Enzym., 2013, 91: 25.
[78] Rajagopalan S, Wang C, Yu K, Kuzin A P, Richter F, Lew S, Miklos A E, Matthews M L, Seetharaman J, Su M, Hunt J F, Cravatt B F, Baker D. Nat. Chem. Biol., 2014, 10(5):386.
[79] Song W J, Tezcan F A. Science, 2014, 346(6216): 1525.
[1] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[2] Shuyang Yu, Wenlei Luo, Jingying Xie, Ya Mao, Chao Xu. Review on Mechanism and Model of Heat Release and Safety Modification Technology of Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(4): 620-642.
[3] Yiming Chen, Huiying Li, Peng Ni, Yan Fang, Haiqing Liu, Yunxiang Weng. Catechol Hydrogel as Wet Tissue Adhesive [J]. Progress in Chemistry, 2023, 35(4): 560-576.
[4] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[5] Zhang Xiaofei, Li Shenhao, Wang Zhen, Yan Jian, Liu Jiaqin, Wu Yucheng. Review on the First-Principles Calculation in Lithium-Sulfur Battery [J]. Progress in Chemistry, 2023, 35(3): 375-389.
[6] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[7] Yanqin Lai, Zhenda Xie, Manlin Fu, Xuan Chen, Qi Zhou, Jin-Feng Hu. Construction and Application of 1,8-Naphthalimide-Based Multi-Analyte Fluorescent Probes [J]. Progress in Chemistry, 2022, 34(9): 2024-2034.
[8] Zonghan Xue, Nan Ma, Weigang Wang. Nitrated Mono-Aromatic Hydrocarbons in the Atmosphere [J]. Progress in Chemistry, 2022, 34(9): 2094-2107.
[9] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[10] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[11] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[12] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[13] Meirong Li, Chenliu Tang, Weixian Zhang, Lan Ling. Performance and Mechanism of Aqueous Arsenic Removal with Nanoscale Zero-Valent Iron [J]. Progress in Chemistry, 2022, 34(4): 846-856.
[14] Fei Wu, Wei Ren, Cheng Cheng, Yan Wang, Heng Lin, Hui Zhang. Biochar-Based Advanced Oxidation Processes for the Degradation of Organic Contaminants in Water [J]. Progress in Chemistry, 2022, 34(4): 992-1010.
[15] Jie Zhao, Shuai Deng, Li Zhao, Ruikai Zhao. CO2 Adsorption Capture in Wet Gas Source: CO2/H2O Co-Adsorption Mechanism and Application [J]. Progress in Chemistry, 2022, 34(3): 643-664.