中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (8): 979-985 DOI: 10.7536/PC150230 Previous Articles   Next Articles

Control and Application of “Coffee Ring” Effect in Inkjet Printing

Sun Jiazhen1, Kuang Minxuan2, Song Yanlin*1,2   

  1. 1. School of Chemistry and Environment, Beihang University, Beijing 100191, China;
    2. Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 51173190, 21121001), the National Basic Research Program of China (973 Program) (No. 2013CB9330004), and the “Strategic Priority Research Program” of the Chinese Academy of Sciences (No. XDA09020000).
PDF ( 5334 ) Cited
Export

EndNote

Ris

BibTeX

Inkjet printing is a material-conserving deposition technique used for liquid phase materials. By virtue of convenience, low-cost, flexibility and speediness, inkjet printing has become one of the most promising candidates for fabricating high-quality patterns. In recent years, inkjet printing has aroused wide attention in functional device research area. The “coffee ring” effect is a common phenomenon in inkjet printing. It directly influences the depositional morphology, which affects the resolution of patterns and the performance of devices. It is very important to research the “coffee ring” effect in inkjet printing. In this paper, we present the recent research progress of the “coffee ring” effect in the process of droplet evaporation. Firstly, the forming mechanism and suppressing methods of “coffee ring” effect are discussed. Secondly, the applications by suppressing or utilizing the “coffee ring” effect in inkjet printing, such as high quality photonic crystal pattern, high sensitive sensor, semiconductor film, transparent conducting film and short-channel transistor are introduced. Finally, a perspective on the remaining challenges of controlling “coffee ring” effect in inkjet printing is proposed. The broad research and application of combining the controlling “coffee ring” effect in inkjet printing and nano-material preparation are discussed. It will be of great significance for patterning, functional device research and 3D printing technology.

Contents
1 Introduction
2 “Coffee ring” effect
2.1 Forming mechanism of “Coffee ring” effect
2.2 Suppressing methods of “Coffee ring” effect
3 Suppressing or utilizing “coffee ring” effect in inkjet printing
3.1 Suppressing “coffee ring” effect in inkjet printing
3.2 Utilizing “coffee ring” effect in inkjet printing
4 Conclusion and outlook

CLC Number: 

[1] Singh M, Haverinen H M, Dhagat P, Jabbour G E. Adv. Mater., 2010, 22: 673.
[2] Teichler A, Perelaerabc J, Schubert U S. J. Mater. Chem. C, 2013, 1: 1910.
[3] Tian D L, Song Y L, Jiang L. Chem. Soc. Rev., 2013, 42: 5184.
[4] Wang J X, Wang L B, Song Y L, Jiang L. J. Mater. Chem. C, 2013, 1: 6048.
[5] Li J T, Ye F, Vaziri S, Muhammed M, Lemme M C, Östling M. Adv. Mater., 2013, 25: 3985.
[6] Minemawari H, Yamada T, Matsui H, Tsutsumi J, Simon H S, Chiba R, Kumai R, Hasegawa T. Nature, 2011, 475: 364.
[7] Sirringhaus H, Kawase T, Friend R H, Shimoda T, Inbasekaran M, Wu W, Woo E P. Science, 2000, 290: 2123.
[8] Ito T, Okazaki S. Nature, 2000, 406: 1027.
[9] Geissler M, Xia Y N. Adv. Mater., 2004, 16: 1249.
[10] Guo L J. Adv. Mater., 2007, 19: 495.
[11] Yan X, Yao J M, Lu G, Chen X, Zhang K, Yang B. J. Am. Chem. Soc., 2004, 126: 10510.
[12] Kuang M X, Wang L B, Song Y L. Adv. Mater., 2014, 26: 6950.
[13] 邝旻翾(Kuang M X), 王京霞(Wang J X),王利彬(Wang L B), 宋延林(Song Y L). 化学学报(Acta Chimica Sinica), 2012, 18: l889.
[14] Nie Z H, Eugenia K. Nat. Mater., 2008, 7: 277.
[15] Menard E, Meitl M A, Sun Y G, Park J U, Shir D J, Nam Y S, Jeon S, Rogers J A. Chem. Rev., 2007, 107: 1117.
[16] Deegan R D, Bakajin O, Dupont T F, Huber G, Nagel S R, Witten T A. Nature, 1997, 389: 827.
[17] Deegan R D, Bakajin O, Dupont T F, Huber G, Nagel S R, Witten T A. Phys. Rev. E, 2000, 62: 756.
[18] Deegan R D. Phys. Rev. E, 2000, 61: 475.
[19] Yunker P J, Still T, Lohr M A, Yodh A G. Nature, 2011, 476: 308.
[20] Yunker P J, Lohr M A, Still T, Borodin A, Durian D J, Yodh A G. Phys. Rev. Lett., 2013, 110: 035501.
[21] Bigioni T P, Lin X M, Nguyen T T, Corwin E I, Witten T A, Jaeger H M. Nat. Mater., 2006, 5: 265.
[22] Soltman D, Subramanian V. Langmuir, 2008, 24: 2224.
[23] Harris D J,Hu H,Conrad J C, Lewis J A. Phys. Rev. Lett., 2007, 98: 148301.
[24] Keseroglu K, Culha M. J. Colloid Interface Sci., 2011, 360: 8.
[25] Van den Berg A M J, de Laat A W M, Smith P J, Perelaera J, Schubert U S. J. Mater. Chem., 2007, 17: 677.
[26] Hu H, Larson R G. J. Phys. Chem. B, 2006, 110: 7090.
[27] Kim D, Jeong S, Park B K, Moon J. Appl. Phys. Lett., 2006, 89: 264101.
[28] Still T, Yunker P J, Yodh A G. Langmuir, 2012, 28: 4984.
[29] Sempels W, Dier R D, Mizuno H, Hofkens J, Vermant J. Nat. Commun., 2013, 4: 1757.
[30] Ko H Y, Park J, Shin H, Moon J. Chem. Mater., 2004, 16: 4212.
[31] Li Y F, Sheng Y J, Tsao H K. Langmuir, 2013, 29: 7802.
[32] Wang L B, Li F Y, Kuang M X, Wang J X, Huang Y, Jiang L, Song Y L. Small, DOI: 10.1002/smll.201403355.
[33] Eral H B, Augustine D M, Duits M H G, Mugele F. Soft Matter, 2011, 7: 4954.
[34] Huang Y, Zhou J M, Su B, Shi L, Wang J X, Chen S R, Wang L B, Zi J, Song Y L, Jiang L. J. Am. Chem. Soc., 2012, 134: 17053.
[35] McGrath J G, Bock R D, Cathcart J M, Lyon L A. Chem. Mater., 2007, 19: 1584.
[36] Cui L Y, Zhang Y Z, Wang J X, Ren Y B, Song Y L, Jiang L. Macromol. Rapid. Comm., 2009, 30: 598.
[37] Cui L Y, Li Y F, Wang J X, Tian E T, Zhang X Y, Zhang Y Z, Song Y L, Jiang L. J. Mater. Chem., 2009, 19: 5499.
[38] Kuang M X, Wang J X, Bao B, Li F Y, Wang L B, Jiang L, Song Y L. Adv. Opt. Mater., 2014, 2: 34.
[39] Bao B, Li M Z, Li Y, Gu Z K, Zhang X Y, Jiang L, Song Y L. Small, DOI: 10.1002/smll.201403005.
[40] Yang Q, Deng M M, Li H Z, Li M Z, Zhang C, Shen W Z, Li Y N, Guo D, Song Y L. Nanoscale, 2015, 7: 421.
[41] Xu L, Wang J X, Song Y L, Jiang L. Chem. Mater., 2008, 20: 3554.
[42] Ge J P, Yin Y D. Angew. Chem., 2011, 50: 1492.
[43] Wang L B, Wang J X, Huang Y, Liu M J, Kuang M X, Li Y F, Jiang L, Song Y L. J. Mater. Chem., 2012, 22: 21405.
[44] Shen W Z, Li M Z, Ye C Q, Jiang L, Song Y L. Lab Chip, 2012, 12: 3089.
[45] Hou J, Zhang H C, Yang Q, Li M Z, Song Y L, Jiang L. Angew. Chem., 2014, 126: 5901.
[46] Hou J, Zhang H C, Yang Q, Li M Z, Jiang L, Song Y L, Small, DOI: 10.1002/smll.201403640.
[47] Bai L, Xie Z Y, Wang W, Yuan C W, Zhao Y J, Mu Z D, Zhong Q F, Gu Z Z. ACS Nano, 2014, 11: 11094.
[48] Shtein M, Peumans P, Benziger J B, Forrest S R. Adv. Mater., 2004, 16: 1615.
[49] Lim J A, Lee W H, Lee H S, Lee J H, Park Y D, Cho K. Adv. Funct. Mater., 2008, 18: 229.
[50] Layani M M, Kamyshny A, Magdassi S. Nanoscale, 2014, 6: 5581.
[51] Hecht D S, Hu L B, Irvin G. Adv. Mater., 2011, 23: 1482.
[52] Layani M, Gruchko M, Milo O, Balberg I, Azulay D, Magdassi S. ACS Nano, 2009, 3: 3537.
[53] Layani M, Berman R, Magdassi S. ACS Appl. Mater. Interfaces, 2014, 6: 18668.
[54] Zhang Z L, Zhang X Y, Xin Z Q, Deng M M, Wen Y Q, Song Y L. Adv. Mater., 2013, 25: 6714.
[55] Zhang Z L, Zhu W Y. J. Mater. Chem. C, 2014, 2: 9587.
[56] Bromberg V, Ma S Y, Singler T J. Appl. Phys. Lett., 2013, 102: 214101.
[57] Jung W J, Kim Y W, Yoo J Y. Anal. Chem., 2009, 81: 8256.
[58] Choi S, Stassi S, Pisano A P, Zohdi T I. Langmuir, 2010, 14: 11690.
[59] Wong T S, Chen T H, Shen X Y, Ho C M. Anal. Chem., 2011, 83: 1871.
[60] Lee K H, Kim S M, Jeong H, Jung G Y. Soft Matter, 2012, 8: 465.
[61] Eom D S, Chang J, Song Y W, Lim J A, Han J T, Kim H, Cho K. J. Phys. Chem. C, 2014, 118: 27081.
[62] Zhang L, Liu H T, Zhao Y, Sun X N, Wen Y G, Guo Y L, Gao X K, Di C A, Yu G, Liu Y Q. Adv. Mater., 2012, 24: 436.
[63] Wang H L, Cheng C, Zhang L, Liu H T, Zhao Y, Guo Y L, Hu W P, Yu G, Liu Y Q. Adv. Mater., 2014, 26: 4683.
[64] He M , Zhang Q L , Zeng X P , Cui D P, Chen J, Li H L, Wang J J, Song Y L. Adv. Mater., 2013, 25: 2291.
[65] Yang X, Chasity V H, Shah J, Sun Y. Soft Matter, 2012, 8: 9205.
[66] Liu M J, Wang J X, He M, Wang L B, Li F Y, Jiang L, Song Y L. ACS Appl. Mater. Interfaces, 2014, 6: 13344.
[67] Li J T, Ye F, Vaziri S, Muhammed M, Lemme M C, Östling M. Adv. Mater., 2013, 25: 3985.
[68] Wei Z H, Chen H N, Yan K Y, Yang S H. Angew. Chem., 2014, 53: 13239.
[69] Galliker P, Schneider J, Eghlidi H, Kress1 S, Sandoghdar V, Poulikakos D. Nat.Commun., 2012, 3: 890.
[1] Zonghan Xue, Nan Ma, Weigang Wang. Nitrated Mono-Aromatic Hydrocarbons in the Atmosphere [J]. Progress in Chemistry, 2022, 34(9): 2094-2107.
[2] Li Zhou, Abdelkrim Yasmine, Zhiguo Jiang, Zhongzhen Yu, Jin Qu. Microplastics: A Review on Biological Effects, Analysis and Degradation Methods [J]. Progress in Chemistry, 2022, 34(9): 1935-1946.
[3] Ru Jiang, Chenxu Liu, Ping Yang, Shuli You. Condensed Matter Chemistry in Asymmetric Catalysis and Synthesis [J]. Progress in Chemistry, 2022, 34(7): 1537-1547.
[4] Qi Huang, Zhenyu Xing. Advances in Lithium Selenium Batteries [J]. Progress in Chemistry, 2022, 34(11): 2517-2539.
[5] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.
[6] Wu Mingming, Lin Kaige, Aydengul Muhyati, Chen Cheng. Research on the Construction and Application of Superwetting Materials with Photothermal Effect [J]. Progress in Chemistry, 2022, 34(10): 2302-2315.
[7] Yang Linyan, Guo Yupeng, Li Zhengjia, Cen Jie, Yao Nan, Li Xiaonian. Modulation of Surface and Interface Properties of Cobalt-Based Fischer-Tropsch Synthesis Catalyst [J]. Progress in Chemistry, 2022, 34(10): 2254-2266.
[8] Ren Zhihua, Yang Xiaoxi, Sun Zhendong, Ren Jing, Sang Nan, Zhou Qunfang, Jiang Guibin. Regulation of Environmental Endocrine Disrupting Chemicals on the Expressions and Transactivation of Estrogen Receptors and the Related Analytical Techniques [J]. Progress in Chemistry, 2022, 34(10): 2121-2133.
[9] Yin Xie, Liyang Zhang, Peijin Ying, Jiacheng Wang, Kuan Sun, Meng Li. Intensified Field-Effect of Hydrogen Evolution Reaction [J]. Progress in Chemistry, 2021, 33(9): 1571-1585.
[10] Xinye Liu, Zhichao Liang, Shanxing Wang, Yuanfu Deng, Guohua Chen. Carbon-Based Materials for Modification of Polyolefin Separators to Improve the Performance of Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2021, 33(9): 1665-1678.
[11] Yun Lu, Hongjuan Shi, Yuefeng Su, Shuangyi Zhao, Lai Chen, Feng Wu. Application of Element-Doped Carbonaceous Materials in Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2021, 33(9): 1598-1613.
[12] Yong Xie, Mingjie Han, Yuhao Xu, Chenyu Xiong, Ri Wang, Shanhong Xia. Inner Filter Effect for Environmental Monitoring [J]. Progress in Chemistry, 2021, 33(8): 1450-1460.
[13] Yifan Zhao, Qiyun Mao, Xiaoya Zhai, Guoying Zhang. Structural Defects Regulation of Bismuth Molybdate Photocatalyst [J]. Progress in Chemistry, 2021, 33(8): 1331-1343.
[14] Linli Guo, Xin Zhang, Min Xiao, Shuanjin Wang, Dongmei Han, Yuezhong Meng. Two-Dimensional Materials Modified Separator Strategies of Suppressing the Shuttle Effect in Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2021, 33(7): 1212-1220.
[15] Lei Wu, Lihui Liu, Shufen Chen. Flexible Organic Light-Emitting Diodes Using Carbon-Based Transparent Electrodes [J]. Progress in Chemistry, 2021, 33(5): 802-817.