中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (6): 755-762 DOI: 10.7536/PC150227 Previous Articles   Next Articles

• Review and evaluation •

The Interaction of Corrole and Its Metal Complex with DNA and Their Anti-Tumor Activity

Wang Jiamin1, Shi Lei2*, Liu Haiyang1*   

  1. 1. Department of Chemistry, South China University of Technology, Guangzhou 510640, China;
    2. Department of Chemistry, Guangdong University of Education, Guangzhou 510303, China
  • Received: Revised: Online: Published:
  • Contact: 10.7536/PC150227 E-mail:shil@gdei.edu.cn;chhyliu@scut.edu.cn
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21171057, 21371059) and the Guangdong Natural Science Foundation, China (No. S2012040006270).
PDF ( 1980 ) Cited
Export

EndNote

Ris

BibTeX

Study on the interaction of corrole and its metal complex with DNA and their anti-tumor activity has become one of the hot topics of corrole chemistry. This review covers the progress on the study of the interaction of corrole and its metal complex with DNA and their anti-tumor activity. The binding mode of corrole or its metal complex with DNA, chemical nuclease activity of corrole and its metal complex in the presence of oxidants or under irradiation, the interaction of corrole and its metal complex with G-quadruplex DNA and their anti-tumor activity are introduced systematically.

Contents
1 Introduction
2 Binding modes between corrole or its metal complex and DNA
3 Nuclease activity of corrole and its metal complex
3.1 Oxidative DNA cleavage mediated by metal corrole
3.2 Photocleavage of DNA by corrole and its metal complex
4 Interaction between G-quadruplex DNA and corrole or its metal complex
5 Anti-tumor activity of corrole and its metal complex
6 Conclusion

CLC Number: 

[1] Gross Z, Galili N, Saltsman I. Angew. Chem. Int. Ed., 1999, 38: 1427.
[2] Liu H Y, Yam F, Xie Y T, Li X Y, Chang C K. J.Am.Chem.Soc., 2009, 131: 12890.
[3] Liu H Y, Mahmood M H R, Qiu S X, Chang C K. Coord.Chem.Rev., 2013, 257: 1306.
[4] Liu H Y, Lai T S, Yeung L L, Chang C K. Org.Lett., 2003,5: 617.
[5] Grodkowski J, Neta P, Fujita E, Mahammed A, Simkhovich L, Gross Z. J. Phys.Chem.A, 2002, 106: 4772.
[6] Ethirajan M, Chen Y H, Joshi P, Pandey R K. Chem.Soc.Rev., 2011, 40: 340.
[7] Aviv-Harel I, Gross Z. Coord. Chem.Rev., 2011, 255: 717.
[8] Song Y M, Wu Q, Yang P J, Luan N N, Wang L F, Liu Y M. J. Inorg. Biochem., 2006, 100: 1685.
[9] Zheng X H, Chen H Y, Tong M L, Ji L N, Mao Z W. Chem.Commun., 2012, 48: 7607.
[10] Dong X D, Wang X Y, Lin M X, Sun H, Yang X L, Guo Z J. Inorg. Chem., 2010, 49: 2541.
[11] Joyner J C, Reichfield J, Cowan J A. J. Am. Chem. Soc., 2011, 133: 15613.
[12] 康永(Kang Y), 艾罡(Ai G). 生物医学工程进展(Journal of Biomedical Engineering), 2011, 31(1): 24.
[13] 陈勇(Chen Y), 李元宗(Li Y Z), 常文宝(Chang W B), 慈云祥(Ci Y X).分析科学学报(Journal of Analytical Science),1994, 10(1): 67.
[14] 张现侠(Zhang X X), 陈灿玉(Chen C Y).化学学报(Acta Chimica Sinica), 2012, 70: 2475.
[15] Gershman Z, Goldberg I, Gross Z. Angew. Chem. Int. Ed., 2007, 46: 4320.
[16] 黄俊腾(Huang J T), 张阳(Zhang Y), 王湘利(Wang X L), 计亮年(Ji L N), 刘海洋(Liu H Y). 无机化学学报(Chinese Journal of Inorganic Chemistry), 2013, 29(8): 1649.
[17] Huang J T, Wang X L, Zhang Y, Mahmood M H R, Huang Y Y, Ying X, Ji L N, Liu H Y. Transition Met. Chem., 2013, 38: 283.
[18] Zhang Y, Wang Q, Wen J Y, Wang X L, Mahmood M H R, Ji L N, Liu H Y. Chin. J. Chem., 2013, 31: 1321.
[19] 张阳(Zhang Y), 陈欢(Chen H), 闻金燕(Wen J Y), 王湘利(Wang X L), 王惠(Wang H), 计亮年(Ji L N), 刘海洋(Liu H Y). 高等学校化学学报(Chemical Journal of Chinese Universities), 2013, 34 (11): 2462.
[20] Zhang Y, Wen J Y, Wang X L, Mahmood M H R, Liu Z Y, Wang H, Ji L N, Liu H Y. Appl. Organometal. Chem., 2014, 28: 559.
[21] Lu J, Liu H Y, Shi L, Wang X L, Ying X, Zhang L, Ji L N, Zang L Q, Chang C K. Chin.Chem.Lett., 2011, 22: 101.
[22] D'Urso A, Nardis S, Pomarico G, Fragala M E, Paolesse R, Purrello R. J.Am.Chem.Soc., 2013, 135: 8632.
[23] Neidle S, Thurston D E. Nat. Rev., 2005, 5: 285.
[24] Noll D M, Mason T M, Miller P S. Chem. Rev., 2006, 106: 277.
[25] 刘海洋 (Liu H Y), 刘兰英 (Liu L Y), 张雷 (Zhang L), 应晓 (Ying X), 王湘利 (Wang X L), 江焕峰 (Jiang H F), 张启光 (Zhang Q G). 高等学校化学学报(Chemical Journal of Chinese Universities), 2007, 28: 1628.
[26] Zhai Q Q, Xu L, Ge Y S, Tian T, Wu W D, Yan S Y, Zhou Y Y, Deng M G, Liu Y, Zhou X. Chem. Eur. J., 2011, 17: 8890.
[27] Sankar J, Rath H, Prabhuraja V, Gokulnath S, Chandrashekar T K, Purohit C S, Verma S. Chem. Eur. J., 2007, 13: 105.
[28] Shi L, Liu H Y, Si L P, Peng K M, You L L, Wang H, Zhang L, Ji L N, Chang C K, Jiang H F. Chin.Chem.Lett., 2010, 21: 373.
[29] 游丽莉(You L L), 沈涵(Shen H), 史蕾(Shi L), 张国良(Zhang G L), 刘海洋(Liu H Y), 王惠(Wang H), 计亮年(Ji L N). 中国科学: 化学(Science China:Chemistry), 2010, 40: 224.
[30] Shi L, Liu H Y, Peng K M, Wang X L, You L L, Lu J, Zhang L, Wang H, Ji L N, Jiang H F. Tetrahedron Lett., 2010, 51: 3439.
[31] Shi L, Jiang H F, Yi W, Wang H H, Wang H, Zhang L, Ji L N, Liu H Y. 物理化学学报(Acta Physico-Chimica Sinica), 2012, 28(2): 465.
[32] 田明月(Tian M Y), 张秀凤(Zhang X F), 潘然(Pan R), 赵长琦(Zhao C Q), 唐亚林(Tang Y L). 化学进展(Progress in Chemistry), 2010, 22(5): 983.
[33] Toro M D, Gargallo R, Eritja R, Jaumot J. Anal. Biochem., 2008, 379: 8.
[34] Fu B Q, Huang J, Ren L, Weng X C, Zhou Y Y, Du Y H, Wu X J, Zhou X, Yang G F. Chem. Commun., 2007, 3264
[35] Fu B Q, Zhang D, Weng X C, Zhang M, Ma H, Ma Y Z, Zhou X. Chem. Eur. J., 2008, 14: 9431.
[36] Ma H, Zhang M, Zhang D, Huang R, Zhao Y,Yang H, Liu Y J, Weng X C, Zhou Y Y, Deng M G, Xu L, Zhou X. Chem. Asian. J., 2010, 5: 114.
[37] Aviezer D, Cotton S, David M, Segev A, Khaselev N, Galili N, Gross Z, Yayon A. Cancer Research, 2000, 60: 2973.
[38] Mahammed A, Gray H B, Weaver J J, Sorasaenee K, Gross Z. Bioconjugate Chem., 2004, 15: 738.
[39] Agadjanian H, Weaver J J, Mahammed A, Rentsendorj A, Bass S, Kim J, Dmochowski I J, Margalit R, Gray H B, Gross Z, Medina-Kauwe L K. Pharm.Res., 2006, 23: 367.
[40] Agadjanian H, Ma J, Rentsendorj A, Valluripalli V, Hwang J Y, Mahammed A, Farkas D L, Gray H B, Gross Z, Medina-Kauwe L K. Proc.Natl.Acad.Sci., 2009, 106: 6105.
[41] Hwang J Y, Lubow J, Chu D, Ma J, Agadjanian H, Sims J, Gray H B, Gross Z, Farkas D L, Medina-Kauwe L K. Mol. Pharm., 2011, 8: 2233.
[42] Hwang J Y, Gross Z, Gray H B, Medina-Kauwe L K, Farkas D L. J. Biomed. Opt., 2011, 16: 066007.
[43] Teo R D, Gray H B, Lim P, Termini J, Domeshek E, Gross Z. Chem. Commun., 2014, 50: 13789.
[44] Ventura B, Esposti A D, Koszarna B, Gryko D T, Flamigni L.New J. Chem., 2005, 29: 1559.
[45] Chang C K, Kong P W, Liu H Y, Yeung L L, Koon H K, Mak N K. Proc. SPIE, 2006, 6139: 613915.
[46] Hwang J Y, Lubow D J, Chu D, Gross Z, Gray H B, Farkas D L, Medina-Kauwe L K. Proc. SPIE, 2011, 7886: 78860M.
[47] Hwang J Y, Lubow D J, Chu D, Sims J, Alonso-Valenteen F, Gray H B, Gross Z, Farkas D L, Medina-Kauwe L K. J. Control. Release., 2012, 163: 368.
[48] Barata J F B, Zamarrón A, Neves M G P M S, Faustino M A F, Tomé A C, Cavaleiro J A S, Rder B, Juarranz A, Sanz-Rodriguez F. Eur. J. Med. Chem., 2015, 92: 135.
[1] Jiahui Ma, Wei Yuan, Simin Liu, Zhiyong Zhao. Self-Assembly of Small Molecule Modified DNA and Their Application in Biomedicine [J]. Progress in Chemistry, 2022, 34(4): 837-845.
[2] Benzhan Zhu, Jing Zhang, Miao Tang, Chunhua Huang, Jie Shao. Mechanism Investigation on DNA Damage Induced by Carcinogenic Haloquinoid Disinfection Byproducts [J]. Progress in Chemistry, 2022, 34(1): 227-236.
[3] Gaojie Yan, Qiong Wu, Linghua Tan. Design, Synthesis and Applications of Nitrogen-Rich Azole-Based Energetic Metal Complexes [J]. Progress in Chemistry, 2021, 33(4): 689-712.
[4] Wendi Guo, Ye Liu. Carbonylation of Alkynes with Different Nucleophiles Catalyzed By Transition Metal Complexes [J]. Progress in Chemistry, 2021, 33(4): 512-523.
[5] Chen Liu, Qiangxiang Li, Di Zhang, Yujie Li, Jinquan Liu, Xilin Xiao. Preparation and Application of MCM-41 Mesoporous Silica in the DNA Biosensors [J]. Progress in Chemistry, 2021, 33(11): 2085-2102.
[6] Kaiyu Zhang, Guowei Gao, Yansheng Li, Yu Song, Yongqiang Wen, Xueji Zhang. Development and Application of DNA Hydrogel in Biosensing [J]. Progress in Chemistry, 2021, 33(10): 1887-1899.
[7] Jiaen Xie, Yuheng Luo, Qianling Zhang, Pingyu Zhang. Metal Complexes in Application of Two-Photon Luminescence Probes [J]. Progress in Chemistry, 2021, 33(1): 111-123.
[8] Qing Wu, Yiyuan Tang, Miao Yu, Yueying Zhang, Xingmei Li. Stimuli-Responsive DNA Nanostructure Drug Delivery System Based on Tumor Microenvironment [J]. Progress in Chemistry, 2020, 32(7): 927-934.
[9] Zixuan Wang, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Design, Self-Assembly and Application of DNA-Peptide Hybrid Molecules [J]. Progress in Chemistry, 2020, 32(6): 687-697.
[10] Zihan Lin, Huang Chen, Jiawei Dong, Daohui Zhao, Libo Li. Nanopore-Based Biomolecular Detection [J]. Progress in Chemistry, 2020, 32(5): 562-580.
[11] Zehuai Mou, Yinjun Wang, Hongyan Xie. Rare-Earth Metal Complexes-Mediated Stereoselective Polymerization of Aromatic Polar Vinyl Monomers [J]. Progress in Chemistry, 2020, 32(12): 1885-1894.
[12] Qian Zhou, Na Li, Kun Li, Xiaoqi Yu. Detection of 5-Formylpyrimidines in DNA Based on Chemoselective Labeling [J]. Progress in Chemistry, 2020, 32(11): 1634-1650.
[13] Huina Zou, Shoufei Zhu. Progresses of 1,10-Phenanthroline Type Ligands in Fe/Co/Ni Catalysis [J]. Progress in Chemistry, 2020, 32(11): 1766-1803.
[14] Jiangbo Liu, Lihua Wang, Xiaolei Zuo. Cell Membranes Functionalization Based on DNA [J]. Progress in Chemistry, 2019, 31(8): 1067-1074.
[15] Shiying Yang, Yichao Xue, Manqian Wang. Complexed Heavy Metal Wastewater Treatment: Decomplexation Mechanisms Based on Advanced Oxidation Processes [J]. Progress in Chemistry, 2019, 31(8): 1187-1198.