中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (8): 1133-1146 DOI: 10.7536/PC150226 Previous Articles   

Synthesis of Graphene Aerogel Adsorbents and Their Applications in Water Treatment

Sun Yiran1, Yang Mingxuan1, Yu Fei*1,2, Chen Junhong1, Ma Jie1   

  1. 1. State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 20009;
    2. School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21207100, 51408362).
PDF ( 6093 ) Cited
Export

EndNote

Ris

BibTeX

Graphene aerogels(GA) are three-dimensional(3D) graphene-based macrostructures with well-defined interconnected porous networks. Their excellent features, including large surface area, controllable porous structure, ability of electronic transmission and unique interconnected networks, make them an ideal material for water treatment. Up to now, there are many fabrication methods for preparing GA which differs in performance and structure. However, their methodology and relationships between different methods, structures and features haven't been reported systematically. This review aims to describe the fabrication methods for preparing GA absorbents as well as their applications in water treatment and perspective. Thus, the structural features of GA, especially those related to adsorption and relationships between structures and adsorption are analyzed. The methodology and key factors in preparing process which have an influence on structures of GA are also summarized. Based on the methodology, the synthesis methods for preparing GA can be classified to five types, namely template method, intercalation method, self-supporting method, substrate-casting method and gelation, which are described and exampled in detail. Applications as well as mechanisms in water treatment, including adsorption of organic pollutants and heavy metals, oil-water separation, photocatalysis and capacitive deionization are systematically reviewed. Finally, the problems in environmental applications and prospects of further research are discussed.

Contents
1 Introduction
2 Structures and adsorptional features of GA
3 Fabrication methods
3.1 Template method
3.2 Intercalation method
3.3 Self-supporting method
3.4 Substrate-casting method
3.5 Gelation
4 Methodology and key factors of preparing GA
5 Applications of GA in water treatment
5.1 Capacitive Deionization
5.2 Adsorption
5.3 Photocatalysis
6 Conclusion

CLC Number: 

[1] Novoselov K S, Geim A K, Morozov S , Jiang D, Zhang Y, Dubonos S, Grigorieva I, A. Firsov, Science, 2004, 306: 666.
[2] Du X, Skachko I, Barker A, Andrei E Y. Nature Nanotechnology, 2008, 3: 491.
[3] Balandin A A. Nature Materials, 2011, 10: 569.
[4] Shahil K M, Balandin A A. Solid State Communications, 2012, 152: 1331.
[5] Novoselov K S, Fal V, Colombo L, Gellert P, Schwab M, Kim K. Nature, 2012, 490: 192.
[6] Rao C N R,Sood A K,Subrahmanyam K S, Govindaraj A. Angewandte Chemie International Edition, 2009, 48: 7752.
[7] Thakur S, Das G, Raul P K, Karak N. Journal of Physical Chemistry C, 2013, 117: 7636.
[8] Zhu Y, Murali S, Cai W, Li X, Suk J W, Potts J R, Ruoff R S. Advanced Materials, 2010, 22: 3906.
[9] Kemp K C, Seema H, Saleh M, Le N H, Mahesh K, Chandra V, Kim K S. Nanoscale, 2013, 5: 3149.
[10] Stankovich S, Dikin D A , Piner R D , Kohlhaas K A, Kleinhammes A, Jia Y, Wu Y, Nguyen S T, Ruoff R S. Carbon, 2007, 45: 1558.
[11] Han Z, Tang Z H, Li P, Yang G Z, Zheng Q B, Yang J H. Nanoscale, 2013, 5: 5462.
[12] Chen Z, Ren W, Gao L, Liu B, Pei S, Cheng H M. Nature Materials, 2011, 10: 424.
[13] Xie X, Yu G, Liu N, Bao Z, Criddle C S, Cui Y. Energy & Environmental Science, 2012, 5: 6862.
[14] Wu X Z, Zhou J, Xing W, Wang G Q, Cui H Y, Zhuo S P, Xue Q Z, Yan Z F, Qiao S Z. Journal of Materials Chemistry, 2012, 22: 23186.
[15] Worsley M A, Pauzauskie P J, Olson T Y, Biener J, Satcher J H Jr, Baumann T F. Journal of the American Chemical Society, 2010, 132: 14067.
[16] Worsley M A, Olson T Y, Lee J R, Willey T M, Nielsen M H, Roberts S K, Pauzauskie P J, Biener J, Satcher J H Jr, Baumann T F. Journal of Physical Chemistry Letters, 2011, 2: 921.
[17] Aliev A E, Oh J Y, Kozlov M E, Kuznetsov A A, Fang S L, Fonseca A F, Ovalle R, Lima M D, Haque M H, Gartstein Y N, Zhang M, Zakhidov A A, Baughman R H. Science, 2009, 323: 1575.
[18] Hu H, Zhao Z, Wan W, Gogotsi Y, Qiu J. Advanced Materials, 2013, 25: 2219.
[19] Sehaqui H, Zhou Q, Berglund L A. Composites Science and Technology, 2011, 71: 1593.
[20] Sun H, Xu Z, Gao C. Advanced Materials, 2013, 25: 2554.
[21] Chen W, Li S, Chen C, Yan L. Advanced Materials, 2011, 23: 5679.
[22] Wu Z S, Yang S, Sun Y, Parvez K, Feng X, Müllen K. Journal of the American Chemical Society, 2012, 134: 9082.
[23] Zhang X, Sui Z, Xu B, Yue S, Luo Y, Zhan W, Liu B. Journal of Materials Chemistry, 2011, 21: 6494.
[24] Ren L, Hui K S, Hui K N. Journal of Materials Chemistry A, 2013, 1: 5689.
[25] Zhang J, Zhao F, Zhang Z, Chen N, Qu L. Nanoscale, 2013, 5: 3112.
[26] Jiang L, Fan Z. Nanoscale, 2014, 6: 1922.
[27] Nardecchia S, Carriazo D, Ferrer M L, Gutiérrez M C, del Monte F. Chemical Society Reviews, 2013, 42: 794.
[28] Lee C, Wei X, Kysar J W, Hone J. Science, 2008, 321: 385.
[29] Lv W, Zhang C, Li Z, Yang Q H. Journal of Physical Chemistry Letters, 2015, 6: 658.
[30] Jo H, Noh H, Kaviany M, Kim J M, Kim M H, Ahn H S. Carbon, 2015, 81: 357.
[31] Zhang L, Zhang F, Yang X, Long G, Wu Y, Zhang T, Leng K, Huang Y, Ma Y, Yu A. Scientific Reports, 2013, 3: 1408.
[32] Huang X, Sun B, Su D, Zhao D, Wang G. Journal of Materials Chemistry A, 2014, 2: 7973.
[33] Sun H, Xu Z, Gao C. Advanced Materials, 2013, 25: 2554.
[34] Dasgupta S, Wang D, Kübel C, Hahn H, Baumann T F, Biener J. Advanced Functional Materials, 2014, 24: 3473.
[35] Kim H J, Randriamahazaka H, Oh I K. Small, 2014, 10: 4985.
[36] Li Y, Samad Y A, Polychronopoulou K, Alhassan S M, Liao K. Scientific reports, 2014, 4: 4652.
[37] Wang C, Su K, Wan W, Guo H, Zhou H, Chen J, Zhang X, Huang Y. Journal of Materials Chemistry A, 2014, 2: 5018.
[38] Yu X, Lu B, Xu Z. Advanced Materials, 2014, 26: 1044.
[39] Estevinho B N, Martins I, Ratola N, Alves A, Santos L. Journal of hazardous materials, 2007, 143: 535.
[40] Chen K, Liu F, Song S, Xue D. CrystEngComm, 2014, 16: 7771.
[41] Liu F, Song S, Xue D, Zhang H. Advanced Materials, 2012, 24: 1089.
[42] Cong H P, Ren X C, Wang P, Yu S H. ACS Nano, 2012, 6: 2693.
[43] Fan Z, Tng D Z Y, Lim C X T, Liu P, Nguyen S T, Xiao P, Marconnet A, Lim C Y, Duong H M. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 445: 48.
[44] Qiu L, Liu D, Wang Y, Cheng C, Zhou K, Ding J, Truong V T, Li D. Advanced Materials, 2014, 26: 3333.
[45] Chi C, Zhang K, Wang Y, Zhang S, Liu X, Liu X, Zhao J, Li Y. Materials Science and Engineering: B, 2015,194: 62.
[46] Kabiri S, Tran D N, Altalhi T, Losic D. Carbon, 2014, 80: 523.
[47] Vinod S, Tiwary C S, da Silva Autreto P A, Taha-Tijerina J, Ozden S, Chipara A C, Vajtai R, Galvao D S, Narayanan T N, Ajayan P M. Nature Communications, 2014, 5: 4541.
[48] Zhi J, Zhao W, Liu X, Chen A, Liu Z, Huang F. Advanced Functional Materials, 2014, 24: 2013.
[49] Min B H , Kim D W , Kim K H , Choi H O , Jang S W, Jung H T. Carbon, 2014, 80: 446.
[50] Yong Y C, Dong X C, Chan-Park M B, Song H, Chen P. ACS Nano, 2012, 6: 2394.
[51] Batzill M. Surface Science Reports, 2012, 67: 83.
[52] Pettes M T, Ji H, Ruoff R S, Shi L. Nano Letters, 2012, 12: 2959.
[53] Cao X, Shi Y, Shi W, Lu G, Huang X, Yan Q, Zhang Q, Zhang H. Small, 2011, 7: 3163.
[54] Choi B G , Yang M, Hong W H, Choi J W, Huh Y S. ACS Nano, 2012, 6: 4020.
[55] Yang Z Y, Jin L J, Lu G Q, Xiao Q Q, Zhang Y X, Jing L, Zhang X X, Yan Y M, Sun K N. Advanced Functional Materials, 2014, 24: 3917.
[56] Vickery J L, Patil A J, Mann S. Advanced Materials, 2009, 21: 2180.
[57] Serrano M C, Patiño J, García-Rama C, Ferrer M L, Fierro J, Tamayo A, Collazos-Castro J E, del Monte F, Gutierrez M C. Journal of Materials Chemistry B, 2014, 2: 5698.
[58] Estevez L, Kelarakis A, Gong Q, Da'as E H, Giannelis E P. Journal of the American Chemical Society, 2011, 133: 6122.
[59] Sun H, Cao L, Lu L. Energy & Environmental Science, 2012, 5: 6206.
[60] Yang X, Zhu J, Qiu L, Li D. Advanced Materials, 2011, 23: 2833.
[61] Burress J W, Gadipelli S, Ford J, Simmons J M, Zhou W, Yildirim T. Angewandte Chemie International Edition, 2010, 49: 8902.
[62] Jahan M, Bao Q, Loh K P. Journal of the American Chemical Society, 2012, 134: 6707.
[63] Li R, Chen C, Li J, Xu L, Xiao G, Yan D. Journal of Materials Chemistry A, 2014, 2: 3057.
[64] Zhang L L, Zhao X, Stoller M D, Zhu Y, Ji H, Murali S, Wu Y, Perales S, Clevenger B, Ruoff R S. Nano Letters, 2012, 12: 1806.
[65] Zhu Y, Murali S, Stoller M D, Ganesh K, Cai W, Ferreira P J, Pirkle A, Wallace R M, Cychosz K A, Thommes M. Science, 2011, 332: 1537.
[66] Liu F, Seo T S. Advanced Functional Materials, 2010, 20: 1930.
[67] Niu Z, Chen J, Hng H H, Ma J, Chen X. Advanced Materials, 2012, 24: 4144.
[68] Tang H, Tu J P, Liu X Y, Zhang Y J, Huang S, Li W Z, Wang X L, Gu C D. J. Mater. Chem. A, 2014, 2: 5834.
[69] Yin S, Goldovsky Y, Herzberg M, Liu L, Sun H, Zhang Y, Meng F, Cao X, Sun D D, Chen H. Advanced Functional Materials, 2013, 23: 2972.
[70] Lee S H, Kim H W, Hwang J O, Lee W J, Kwon J, Bielawski C W, Ruoff R S, Kim S O. Angewandte Chemie International Edition, 2010, 49: 10084.
[71] Yin S, Zhang Y, Kong J, Zou C, Li C M, Lu X, Ma J, Boey F Y C, Chen X. ACS Nano, 2011, 5: 3831.
[72] Korkut S, Roy-Mayhew J D, Dabbs D M, Milius D L, Aksay I A. ACS Nano, 2011, 5: 5214.
[73] Xu Y, Wu Q, Sun Y, Bai H, Shi G. ACS Nano, 2010, 4: 7358.
[74] Huang C, Bai H, Li C, Shi G. Chemical Communications, 2011, 47: 4962.
[75] Menzel R, Barg S, Miranda M, Anthony D B, Bawaked S M, Mokhtar M, Al-Thabaiti S A, Basahel S N, Saiz E, Shaffer M S. Advanced Functional Materials, 2015, 25: 1.
[76] Song X, Lin L, Rong M, Wang Y, Xie Z, Chen X. Carbon, 2014, 80: 174.
[77] Bai H, Li C, Wang X, Shi G. Chemical Communications, 2010, 46: 2376.
[78] Fang Q, Chen B. Journal of Materials Chemistry A, 2014, 2: 8941.
[79] Bai H, Li C, Wang X, Shi G. Journal of Physical Chemistry C, 2011, 115: 5545.
[80] Compton O C, An Z, Putz K W, Hong B J, Hauser B G, Catherine Brinson L, Nguyen S T. Carbon, 2012, 50: 3399.
[81] Qiu B, Xing M, Zhang J. Journal of the American Chemical Society, 2014, 136: 5852.
[82] Liang J, Cai Z, Li L, Guo L, Geng J. RSC Advances, 2014, 4: 4843.
[83] Tang Z, Shen S, Zhuang J, Wang X. Angewandte Chemie International Edition Engl, 2010, 49: 4603.
[84] Xu Y, Sheng K, Li C, Shi G. ACS Nano, 2010, 4: 4324.
[85] Sheng K X, Xu Y X, Li C, Shi G Q. New Carbon Materials, 2011, 26: 9.
[86] Zhang L, Chen G, Hedhili M N, Zhang H, Wang P. Nanoscale, 2012, 4: 7038.
[87] Zu S Z, Han B H. Journal of Physical Chemistry C, 2009, 113: 13651.
[88] Sun S, Wu P. Journal of Materials Chemistry, 2011, 21: 4095.
[89] Kundu P, Nethravathi C, Deshpande P A, Rajamathi M, Madras G, Ravishankar N. Chemistry of Materials, 2011, 23: 2772.
[90] Sun Y, Wu Q, Shi G. Energy & Environmental Science, 2011, 4: 1113.
[91] Wang R, Xu C, Sun J, Gao L. Scientific Reports, 2014, 4: 7171.
[92] Qian Y, Ismail I M, Stein A. Carbon, 2014, 68: 221.
[93] Han W, Ren L, Gong L, Qi X, Liu Y, Yang L, Wei X, Zhong J. ACS Sustainable Chemistry & Engineering, 2014, 2: 741.
[94] Whitby R L. ACS Nano, 2014, 8: 9733.
[95] Qin S Y, Liu X J, Zhuo R X, Zhang X Z. Macromolecular Chemistry and Physics, 2012, 213: 2044.
[96] Bai H, Li C, Wang X, Shi G. Chemical Communications, 2010, 46: 2376.
[97] Bao L, Zang J, Li X. Nano letters, 2011, 11: 1215.
[98] Tang Z, Shen S, Zhuang J, Wang X. Angewandte Chemie International Edition, 2010, 122: 4707.
[99] Su D. Chemical Communications, 2012, 48: 7149.
[100] Pei S, Cheng H M. Carbon, 2012, 50: 3210.
[101] Tao Y, Xie X, Lv W, Tang D M, Kong D, Huang Z, Nishihara H, Ishii T, Li B, Golberg D. Scientific Reports, 2013, 3: 2975.
[102] Shen T Z, Hong S H, Song J K. Nature Materials, 2014, 13: 394.
[103] Bi H, Yin K, Xie X, Zhou Y, Wan N, Xu F, Banhart F, Sun L, Ruoff R S. Advanced Materials, 2012, 24: 5124.
[104] Xie X, Zhou Y, Bi H, Yin K, Wan S, Sun L. Scientific Reports, 2013, 3: 2117.
[105] Dong Q, Wang G, Qian B, Hu C, Wang Y, Qiu J. Electrochimica Acta, 2014, 137: 388.
[106] Sui Z, Meng Q, Zhang X, Ma R, Cao B. Journal of Materials Chemistry, 2012, 22: 8767.
[107] Worsley M A, Pham T T, Yan A, Shin S J, Lee J R, Bagge-Hansen M, Mickelson W, Zettl A. ACS Nano, 2014, 8: 11013.
[108] Wen X, Zhang D, Yan T, Zhang J, Shi L. Journal of Materials Chemistry A, 2013, 1: 12334.
[109] Wang H, Zhang D, Yan T, Wen X, Zhang J, Shi L, Zhong Q, Journal of Materials Chemistry A, 2013, 1: 11778.
[110] Yin H, Zhao S, Wan J, Tang H, Chang L, He L, Zhao H, Gao Y, Tang Z. Advanced Materials, 2013, 25: 6270.
[111] Liu Y, Nie C, Pan L, Xu X, Sun Z, Chua D H C. Inorganic Chemistry Frontiers, 2014, 1: 249.
[112] Wimalasiri Y, Mossad M, Zou L. Desalination, 2015, 357: 178.
[113] Zhao L, Yu B, Xue F, Xie J, Zhang X, Wu R, Wang R, Hu Z, Yang S T, Luo J. Journal of Hazardous materials, 2015, 286C: 449.
[114] Li L, Zhou G, Weng Z, Shan X Y, Li F, Cheng H M. Carbon, 2014, 67: 500.
[115] Zhang F, Wang B, He S, Man R. Journal of Chemical & Engineering Data, 2014, 59: 1719.
[116] Han Z, Tang Z, Shen S, Zhao B, Zheng G, Yang J. Scientific Reports, 2014, 4: 5025.
[117] Wu S, Zhang K, Wang X, Jia Y, Sun B, Luo T, Meng F, Jin Z, Lin D, Shen W, Kong L, Liu J. Chemical Engineering Journal, 2015, 262: 1292.
[118] Wang J, Shi Z, Fan J, Ge Y, Yin J, Hu G. Journal of Materials Chemistry, 2012, 22: 22459.
[119] Zhao Y, Hu C, Hu Y, Cheng H, Shi G, Qu L. Angewandte Chemie International Edition, 2012, 124: 11533.
[120] Martín-Jimeno F J, Suárez-García F, Paredes J I, Martínez-Alonso A, Tascón J M D. Carbon, 2015, 81: 137.
[121] Ma T, Chang P R, Zheng P, Zhao F, Ma X. Chemical Engineering Journal, 2014, 240: 595.
[122] Nardecchia S, Carriazo D, Ferrer M L, Gutierrez M C, del Monte F. Chem.Soc. Rev., 2013, 42:794.
[123] Wu T, Chen M, Zhang L, Xu X, Liu Y, Yan J, Wang W, Gao J. Journal of Materials Chemistry A, 2013, 1: 7612.
[124] Zhao Z, Wang X, Qiu J, Lin J, Xu D, Zhang C, Lv M, Yang X. Reviews on Advanced Materials Science, 2014, 36: 137
[125] Chi C, Xu H, Zhang K, Wang Y, Zhang S, Liu X, Liu X, Zhao J, Li Y. Materials Science and Engineering: B, 2015, 194: 62.
[126] Kabiri S, Tran D N H, Altalhi T, Losic D. Carbon, 2014, 80: 523.
[127] Du J, Lai X, Yang N, Zhai J, Kisailus D, Su F, Wang D, Jiang L. ACS Nano, 2010, 5: 590.
[128] Liu W, Cai J, Li Z. ACS Sustainable Chemistry & Engineering, 2015,3: 277.
[129] Li X, Yang S, Sun J, He P, Xu X, Ding G. Carbon, 2014, 78: 38.
[1] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[2] Yiling Tan, Shichun Li, Xi Yang, Bo Jin, Jie Sun. Strategies of Improving Anti-Humidity Performance for Metal Oxide Semiconductors Gas-Sensitive Materials [J]. Progress in Chemistry, 2022, 34(8): 1784-1795.
[3] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[4] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[5] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[6] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[7] Jie Zhao, Shuai Deng, Li Zhao, Ruikai Zhao. CO2 Adsorption Capture in Wet Gas Source: CO2/H2O Co-Adsorption Mechanism and Application [J]. Progress in Chemistry, 2022, 34(3): 643-664.
[8] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
[9] Wei Li, Tiangui Liang, Yuanchuang Lin, Weixiong Wu, Song Li. Machine Learning Accelerated High-Throughput Computational Screening of Metal-Organic Frameworks [J]. Progress in Chemistry, 2022, 34(12): 2619-2637.
[10] Baoyou Yan, Xufei Li, Weiqiu Huang, Xinya Wang, Zhen Zhang, Bing Zhu. Synthesis of Metal-Organic Framework-NH2/CHO and Its Application in Adsorption Separation [J]. Progress in Chemistry, 2022, 34(11): 2417-2431.
[11] Wenjing Wang, Di Zeng, Juxue Wang, Yu Zhang, Ling Zhang, Wenzhong Wang. Synthesis and Application of Bismuth-Based Metal-Organic Framework [J]. Progress in Chemistry, 2022, 34(11): 2405-2416.
[12] Kang Chun, Lin Yanxin, Jing Yuanju, Wang Xinbo. Preparation and Environmental Applications of 2D Nanomaterial MXenes [J]. Progress in Chemistry, 2022, 34(10): 2239-2253.
[13] Chenliu Tang, Yunjie Zou, Mingkai Xu, Lan Ling. Photocatalytic Reduction of Carbon Dioxide with Iron Complexes [J]. Progress in Chemistry, 2022, 34(1): 142-154.
[14] Ming Ge, Zheng Hu, Quanbao He. Application of Spinel Ferrite-Based Advanced Oxidation Processes in Organic Wastewater Treatment [J]. Progress in Chemistry, 2021, 33(9): 1648-1664.
[15] Yun Lu, Hongjuan Shi, Yuefeng Su, Shuangyi Zhao, Lai Chen, Feng Wu. Application of Element-Doped Carbonaceous Materials in Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2021, 33(9): 1598-1613.