中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (6): 744-754 DOI: 10.7536/PC150224 Previous Articles   Next Articles

• Supramolecular Chemistry Issue •

Dynamic Covalent Macrocycles Constructed via Organic Templates

Huang Guobao1,2, Jiang Wei*2   

  1. 1. School of Chemistry and Environment, South China Normal University, Guangzhou 511400, China;
    2. Department of Chemistry, South University of Science and Technology of China, Shenzhen 518055, China
  • Received: Revised: Online: Published:
  • Contact: 10.7536/PC150224 E-mail:jiangw@sustc.edu.cn
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21302090).
PDF ( 1136 ) Cited
Export

EndNote

Ris

BibTeX

Dynamic covalent macrocycles templated by organic molecules have been thoroughly reviewed. Organic templates have much larger sizes than metal ions, and therefore are suitable to template the formation of macrocycles with much larger cavity. Meanwhile, there are a variety of organic molecules, which may work as templates. Their structures can be tailor-made through various organic reactions. Out of many dynamic covalent bonds, there are three popular types which are often used to construct dynamic covalent macrocycles via template effect: disulfide, boronic ester, and imine. The reversibility of former two bonds can be switched on or off through changing the conditions. While imine bonds can be reduced to kinetically inert chemical bonds. Thus, the thermodynamically stable macrocycles in the presence of templates can be converted to the corresponding kinetically inert macrocycles, providing a new method for the preparation of macrocyclic hosts. In addition, the host-guest binding motifs based on dynamic covalent macrocycles can be used to construct more complex supramolecular architectures, for example, rotaxanes and catenanes.

Contents
1 Introduction
2 Constructions of dynamic covalent macrocycles
2.1 Dynamic covalent macrocycles based on S-S bond
2.2 Dynamic covalent macrocycles based on boronic ester
2.3 Dynamic covalent macrocycles based on Schiff's base
3 Complex architectures based on dynamic covalent macrocycles
3.1 Rotaxanes based on dynamic covalent macrocycles
3.2 Catenane based on dynamic covalent macrocycles
4 Conclusion

CLC Number: 

[1] a) 刘育(Liu Y), 尤长城(You C C), 张衡益(Zhang H Y). 超分子化学——合成受体的分子识别与组装(Supramolecular Chemistry——molecular recognition and self-assembly of synthetic receptors). 天津: 南开大学出版社(Tianjin: Nankai university press), 2003.; b) 罗勤慧(Luo Q H). 大环化学——主-客体化合物和超分子(Macrocyclic Chemistry —— Host-Guest Compound and Supramolecular). 北京: 科学出版社(Beijing: Science Press), 2009. 294.
[2] Pedersen C J. J. Am. Chem. Soc., 1967, 89: 7017.
[3] a) Zhang Z J, Zhang H Y, Liu Y. Chem. J. Chin. Universities. 2011, 9: 1913.; b) Wang F, Dong S Y, Zheng B, Huang F H. Acta. Polym. Sin., 2011, 9: 956.; c) Zheng B, Wang F, Dong S Y, Huang F H. Chem. Soc. Rev., 2012, 5: 1621.; d) Zhang Y M, Wang Z, Chen L, Song H B, Liu Y, J. Phys. Chem. B, 2014, 118: 2433.; e) Cheng H B, Zhang H Y, Liu Y. J. Am. Chem. Soc., 2013, 135: 10190.; f) Zhang Z J, Zhang H Y, Wang H, Liu Y. Angew. Chem. Int. Ed., 2011, 50: 10834.
[4] a) Liu Y, Chen Y. Acc. Chem. Res., 2006, 10: 681.; b) Chen Y, Liu Y. Chem. Soc. Rev., 2010, 2: 495.; c) Chen Y, Liu Y. Chinese. J. Org. Chem., 2012, 5: 805.; d) Chen Y, Zhang Y M, Liu Y. Israel J. Chem., 2011, 5/6: 515.; e) Chen G S, Jiang M. Chem. Soc. Rev., 2011, 40: 2254.
[5] a) Guo D S, Wang K, Liu Y. J. Incl. Phenom. Macro., 2008, 1/2: 1.; b) Guo D S, Chen K, Zhang H Q, Liu Y. Chem. Asian J., 2009, 3: 1861.; c) Guo D S, Liu Y. Chem. Soc. Rev., 2012, 18: 5907.; d) Guo D S, Liu Y. Acc. Chem. Res., 2014, 7: 1925.; e) Song M M, Sun Z Y, Han C P, Tian D M, Kim J S, Li H B. Chem. Asian J. 2014, 9: 2344(invited review).; f) Zhang X Y, Zhao H Y, Tian D M, Deng H T, Li H B. Chem. Eur. J. 2014, 20: 9367.; g) Miao F J, Zhou J, Tian D M, Li H B. Org. Lett. 2012, 14: 3572.; h) Feng N M, Zhao, H Y, Tian, D M, Li H B. Org. Lett. 2012, 14: 1958.
[6] Wang K, Guo D S, Zhang H Q, Li D, Zheng X L, Liu Y. J. Med. Chem., 2009, 52: 6402.
[7] Guo D S, Wang K, Wang Y X, Liu Y. J. Am. Chem. Soc., 2012, 134: 10244.
[8] Kim J, Jung I S, Kim S Y, Lee E, Kang J K, Sakamoto S, Yamaguchi K, Kim K. J. Am. Chem. Soc., 2000, 122: 540.
[9] Ma D, Hettiarachchi G, Nguyen D, Zhang B, Wittenberg J B, Zavalij P Y, Briken V, Isaacs L. Nat. Chem., 2012, 4: 503.
[10] a) Chen Y, Zhang Y M, Liu Y. Isr. J. Chem., 2011, 51: 515.; b) Liu K, Liu Y L, Yao Y X, Yuan H X, Wang S, Wang Z Q, Zhang X. Angew. Chem. Int. Ed., 2013, 52: 8285.
[11] a) Xue M, Yang Y, Chi X D, Zhang Z B, Huang F H. Acc. Chem. Res., 2012, 8: 1294.; b) Cao D R, Meier H. Asian J. Org. Chem., 2014, 3: 244.; c) Cragg P J, Sharma K. Chem. Soc. Rev., 2012, 41: 597.; d) Ogoshi T, Yamagishi T A. Eur. J. Org. Chem., 2013, 15: 2961.; e) Zhang H, Zhao Y, Chem. Eur. J., 2013, 19: 16862.; f) Strutt N L, Zhang H, Schneebeli S T, Stoddart J F. Acc. Chem. Res., 2014, 47: 2631.; g) Li C. Chem. Commun., 2014, 50: 12420.; h) Xia, M C, Yang Y W. Prog. Chem., 2015, DOI: 10.7536/pc 141231(In Chinese).
[12] a) Wang M X. Chem. Commun., 2008, 4541.; b) Guo Q H, Fu Z D, Zhao L, Wang M X. Angew. Chem. Int. Ed., 2014, 53: 13548.; c) Wang M X. Acc. Chem. Res., 2012, 45: 182
[13] Chen H, Fan J, Hu X, Ma J, Wang S, Li J, Yu Y, Jia X, Li C. Chem. Sci., 2015, 6: 197.
[14] a) Tian X H, Chen C F. Org. Lett., 2010, 12: 524.; b) Xue M, Chen C F. Org. Lett., 2009, 11: 5294.
[15] Wang J H, Feng H T, Zheng Y S. Chem. Commun., 2014, 50: 11407.
[16] a) Chun Y, Singh N J, Hwang I C, Lee J W, Yu S U, Kim K S. Nat. Commun., 2013, 4: 1797.; b) Zhou H J, Zhao Y S, Gao G, Li S Q, Lan J B, You J S. J. Am. Chem. Soc., 2013, 135: 14908.
[17] Lee S, Chen C H, Flood A H. Nat. Chem., 2013, 5: 704.
[18] Tan L L, Li H, Tao Y, Zhang S X A, Wang B, Yang Y W. Adv. Mater., 2014, 26: 7027.
[19] a) Si W, Chen L, Hu X B, Tang G F, Chen Z X, Hou J L, Li Z T. Angew. Chem. Int. Ed., 2011, 50: 12564.; b) Si W, Li Z T, Hou J L. Angew. Chem. Int. Ed., 2014, 53: 4578.
[20] Yu G, Ma Y, Han C, Yao Y, Tang G, Mao Z, Gao C, Huang F H. J. Am. Chem. Soc., 2013, 135: 10310.
[21] a) Cao Y, Hu X Y, Li Y, Zou X C, Xiong S H, Lin C, Shen Y Z, Wang L Y. J. Am. Chem. Soc., 2014, 136: 10762.; b) Duan Q P, Cao Y, Li Y, Hu X Y, Xiao T X, Lin C, Pan Y, Wang L Y. J. Am. Chem. Soc., 2013,135: 10542.; c) Chang Y, Yang K, Wei P, Huang S, Pei Y, Zhao W, Pei Z. Angew. Chem. Int. Ed., 2014, 53: 13126.
[22] a) Hu X Y, Wu X, Duan Q P, Lin C, Wang L Y. Org. Lett., 2012,14: 4826.; b) Zhang Z, Luo Y, Chen J, Dong S, Yu Y, Ma Z, Huang F. Angew. Chem. Int. Ed., 2011, 50: 1397.; c) Xu J F, Chen Y Z, Wu L Z, Tung C H, Yang Q Z. Org. Lett.,2013, 15: 6148.; d) Wang X Y, Han K, Li J, Jia X S, Li C J. Polym. Chem., 2013, 4: 3998.
[23] Curry J D, Busch D H. J. Am. Chem. Soc., 1964, 86: 592.
[24] Otto S, Furlan R L E, Sanders J K M. J. Am. Chem. Soc., 2000, 122: 12063.
[25] a) Otto S, Furlan R L E, Sanders J K M. Science, 2002, 297: 590.; b) Brisig B, Sanders J K M, Otto S. Angew. Chem. Int. Ed., 2003, 42: 1270.
[26] Corbett P T, Tong L H, Sanders J K, Otto S. J. Am. Chem. Soc., 2005, 127: 8902.
[27] a) Corbett P T, Sanders J K, Otto S. J. Am. Chem. Soc., 2005, 127: 9390.; b) West K R, Ludlow R F, Corbett P T, Besenius P, Mansfeld F M, Cormack P A G, Sherrington D C, Goodman J M, Stuart M C A, Otto S. J. Am. Chem. Soc., 2008, 130: 10834.
[28] Vial L, Ludlow R F, Leclaire J, Ruth P F, Otto S. J. Am. Chem. Soc., 2006, 128: 10253.
[29] a) Iwasawa N, Takahagi H. J. Am. Chem. Soc., 2007, 129: 7754.; b) Takahagi H, Iwasawa N. Chem. Eur. J., 2010, 16: 13680.
[30] Takahagi H, Fujibe S, Iwasawa N. Chem. Eur. J., 2009, 15: 13327.
[31] Ito S, Takata H, Ono K, Iwasawa N. Angew. Chem. Int. Ed., 2013, 52: 11045.
[32] Lin J B, Xu X N, Jiang X K, Li Z T. J. Org. Chem. 2008, 73: 9403.
[33] He Z F, Ye G, Jiang W, Chem. Eur. J., 2015, 21: 3005.
[34] Glink P T, Oliva A I, Stoddart J F, White A J P, Williams D J. Angew. Chem. Int. Ed., 2001, 40: 1870.
[35] Aricó F, Chang T, Cantrill S J, Khan S I, Stoddart J F. Chem. Eur. J., 2005, 11: 4655.
[36] Horn M, Ihringer J, Glink P T, Stoddart J F. Chem. Eur. J., 2003, 9: 4046.
[37] Leung K C F, Aricoó F, Cantrill S J, Stoddart J F. J. Am. Chem. Soc., 2005, 127: 5808.
[38] Leung K C F, Aricoó F, Cantrill S J, Stoddart J F. Macromolecules, 2007, 40: 3951.
[39] Wu J H, Leung K C F, Stoddart J F. PNAS., 2007, 104, 44: 17266.
[40] Avestro A J, Gardner D M, Vermeulen N A, Wilson E A, Schneebeli S T, Whalley A C, Belowich M E, Carmieli R, Wasielewski M R, Stoddart J F. Angew. Chem. Int. Ed., 2014, 53: 4442.
[41] a) Lehn J M. Science, 1985, 227: 849.; b) An H, Bradshaw J S, Izatt R M. Chem. Rev., 1992, 92: 543.
[42] a) Bryant W S, Jones J W, Mason P E, Guzei I, Rheingold A L, Fronczek F R, Nagvekar D S, Gibson H W, Org. Lett. 1999, 1: 1001.; b) Huang F H, Fronczek F R, Gibson H W. J. Am. Chem. Soc. 2003, 125: 9272.; c) Huang F H, Gibson H W, Brant W S, Magvekar D S, Fronczek F R. J. Am. Chem. Soc. 2003, 125: 9367.; d) Zhang J, Huang F H, Li N, Gibson H W, Gantzel P, Rheigold A L. J. Org. Chem. 2007, 72: 8935.; e) Pederson A M P, Vetor R C, Rouser M A, Huang F H, Slebodnick C, Schoonover D V, Gibson H W. J. Org. Chem. 2008, 73: 5570.
[43] a) Klivansky L M, Koshkakaryan G, Cao D, Liu Y. Angew. Chem. Int. Ed., 2009, 48: 4185.; b) Pun A, Hanifiv D A, Kiel G, Brien E O, Liu Y. Angew. Chem. Int. Ed., 2012, 51: 13119.
[44] Cantrill S J, Rowan S J, Stoddart J F. Org. Lett., 1999, 1: 1363.
[45] Rowan S J, Stoddart J F. Org. Lett., 1999, 1: 1913.
[46] a) Odell B, Reddington M V, Slawin A M Z, Spencer N, Stoddart J F, Williams D J. Angew. Chem. Int. Ed., 1988, 27: 1547.; b) Brown C L, Philp D, Stoddart J F. Syn.Lett., 1991, 462.; c) Brown C L, Philp D, Spencer N, Stoddart J F. Isr. J. Chem., 1992, 32: 61.
[47] Koshkakaryan G, Cao D, Klivansky L M, Teat S J, Tran J L, Liu Y. Org. Lett., 2010, 12: 1528.
[1] Liangchun Li, Renlin Zheng, Yi Huang, Rongqin Sun. Self-Sorting Assembly in Multicomponent Self-Assembled Low Molecular Weight Hydrogels [J]. Progress in Chemistry, 2023, 35(2): 274-286.
[2] Meng Wang, He Song, Yewen Li. Three Dimensional Self-Assembled Blue Phase Liquid Crystalline Photonic Crystal [J]. Progress in Chemistry, 2022, 34(8): 1734-1747.
[3] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[4] Yuling Liu, Tengda Hu, Yilian Li, Yang Lin, Borsali Redouane, Yingjie Liao. Fast Self-Assembly Methods of Block Copolymer Thin Films [J]. Progress in Chemistry, 2022, 34(3): 609-615.
[5] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[6] Chuxuan Yan, Qinglin Li, Zhengqi Gong, Yingzhi Chen, Luning Wang. Organic Semiconductor Nanostructured Photocatalysts [J]. Progress in Chemistry, 2021, 33(11): 1917-1934.
[7] Yena Feng, Shuhe Liu, Shubo Zhang, Tong Xue, Honglin Zhuang, Anchao Feng. Preparation of SiO2/Polymer Nanocomposites Based on Polymerization-Induced Self-Assembly [J]. Progress in Chemistry, 2021, 33(11): 1953-1963.
[8] Xiangli Chen, Kaiqiang Liu, Yu Fang. Molecular Gels: From Structural Regulation to Functional Applications [J]. Progress in Chemistry, 2020, 32(7): 861-872.
[9] Zixuan Wang, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Design, Self-Assembly and Application of DNA-Peptide Hybrid Molecules [J]. Progress in Chemistry, 2020, 32(6): 687-697.
[10] Kangkang Zhi, Xin Yang. Natural Product Gels and Their Gelators [J]. Progress in Chemistry, 2019, 31(9): 1314-1328.
[11] Daiwu Lin, Qiguo Xing, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Supramolecular Chiral Self-Assembly of Peptides and Its Applications [J]. Progress in Chemistry, 2019, 31(12): 1623-1636.
[12] Yao-Hua Liu, Yu Liu. Photo-Controlled Supramolecular Assemblies Based on Azo Group [J]. Progress in Chemistry, 2019, 31(11): 1528-1539.
[13] Zi-Yue Xu, Yun-Chang Zhang, Jia-Le Lin, Hui Wang, Dan-Wei Zhang, Zhan-Ting Li. Supramolecular Self-Assembly Applied for the Design of Drug Delivery Systems [J]. Progress in Chemistry, 2019, 31(11): 1540-1549.
[14] Jiatian Guo, Yuchao Lu, Chen Bi, Jiating Fan, Guohe Xu, Jingjun Ma. Stimuli-Responsive Peptides Self-Assembly and Its Application [J]. Progress in Chemistry, 2019, 31(1): 83-93.
[15] Liu Xu, Chen Qian, Chenqi Zhu, Zhipeng Chen, Rui Chen*. The Study of Peptides Nanomedicine for Drug Delivery Systems [J]. Progress in Chemistry, 2018, 30(9): 1341-1348.