中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (9): 1191-1197 DOI: 10.7536/PC150218 Previous Articles   Next Articles

• Review and comments •

The DNA Tetrahedron Nanostructure Materials and Their Applications

Dong Shibiao1,2, Jiao Xiong1*, Zhao Rongtao2, Xu Jinkun2, Song Hongbin2, Hao Rongzhang2*   

  1. 1. Institute of Applied Mechanics and Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China;
    2. Institute of Disease Control and Prevention, PLA, Beijing 100071, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National High Technology Research and Development Program of China (No.2015AA020929), the Beijing Nova Program (No.Z141107001814071), the National Natural Science Foundation of China (No.21105122), and the Beijing Natural Science Foundation(No.7132164).
PDF ( 2704 ) Cited
Export

EndNote

Ris

BibTeX

Nowadays, DNA tetrahedron nanostructure materials, formed by self-assembly based on DNA nanotechnology, have become a hot topic in the field of DNA nanomaterials because of their stable structures, superior mechanical properties, rich modification sites, and convenient fabrication methods with high yield. The synthesis of DNA tetrahedron only needs one step of thermal denaturation using four single nucleotides as raw materials. Their functionalization molecules can be modified on the vertexes, embedded between the double-stranded DNA of the tetrahedron edges, hanged on the edges, or encapsulated in the cage-like structure of the tetrahedron. The structure of tetrahedron can also be intelligently controlled through smart design such as integrating DNA hairpin loop structure onto the edges. This review introduces the design principle of the DNA tetrahedron nanostructure materials, the functionalization and intellectualization methods based on their unique nanostructure, as well as their applications on molecular diagnosis, bioimaging and targeted drug delivery, and finally discusses the considerations in the future research of this field.

Contents
1 Introduction
2 DNA tetrahedron nanostructures
2.1 The self-assembly principle
2.2 The functional modification and intellectualization
3 The applications of tetrahedron nanostructures
3.1 Molecular diagnosis
3.2 Bioimaging
3.3 Molecular transport and targeted drug delivery
4 Conclusion and outlook

CLC Number: 

[1] Goodman R P, Schaap I A, Tardin C F, Erben C M, Berry R M, Schmidt C F, Turberfield A.J. Science, 2005, 310(5754): 1661.
[2] Seeman N C. Nature, 2003, 421(6921): 427.
[3] Dietz H, Douglas S M, Shih W M. Science, 2009, 325(5941): 725.
[4] Seeman N C. J. Theor. Biol., 1982, 99(2): 237.
[5] Rothemund P W. Nature, 2006, 440(7082): 297.
[6] Aldaye F A, Palmer A L, Sleiman H F. Science, 2008, 321(5897): 1795.
[7] 贾思思(Jia S S), 晁洁(Chao J), 樊春海(Fan C H), 柳华杰(Liu H J). 化学进展(Progress in Chemistry), 2014, 26(5): 695.
[8] 蔡苗(Cai M), 王强斌(Wang Q B). 化学进展(Progress in Chemistry), 2010, 22(5): 975.
[9] Chhabra R, Sharma J, Liu Y, Rinker S, Yan H. Adv. Drug Delivery Rev., 2010, 62(6): 617.
[10] Chen J H, Seeman N C. Nature, 1991, 350(6319): 631.
[11] Zhang Y, Seeman N C. J. Am. Chem. Soc., 1994, 116(5): 1661.
[12] Shih W M, Quispe J D, Joyce G F. Nature, 2004, 427(6975): 618.
[13] Aldaye F A, Sleiman H F. J. Am. Chem. Soc., 2007, 129(44): 13376.
[14] 钱璐璐(Qian L L), 汪颖(Wang Y), 张钊(Zhang Z), 赵健(Zhao J), 潘敦(Pan D), 张益(Zhang Y), 刘强(Liu Q), 樊春海(Fan C H), 胡钧(Hu J), 贺林(He L). 科学通报(Chinese Science Bulletin), 2006, 51(24): 2860.
[15] He Y, Ye T, Su M, Zhang C, Ribbe A E, Jiang W, Mao C. Nature, 2008, 452(7184): 198.
[16] Bergamini C, Angelini P, Rhoden K J, Porcelli A M, Fato R, Zuccheri G. Methods, 2014, 67(2): 185.
[17] Li J, Pei H, Zhu B, Liang L, Wei M, He Y, Chen N, Li D, Huang Q, Fan C H. ACS Nano, 2011, 5(11): 8783.
[18] Charoenphol P, Bermudez H. Acta Biomater., 2014, 10(4): 1683.
[19] Seelig G, Soloveichik D, Zhang D Y, Winfree E. Science, 2006, 314(5805): 1585.
[20] Kim K R, Kim D R, Lee T, Yhee J Y, Kim B S, Kwon I C, Ahn D R. Chem. Commun., 2013, 49(20): 2010.
[21] Goodman R P, Berry R M, Turberfield A J. Chem. Commun., 2004, 12: 1372.
[22] Goodman R P, Heilemann M, Doose S, Erben C M, Kapanidis A N, Turberfield A J. Nat. Nanotechnol., 2008, 3(2): 93.
[23] Pei H, Lu N, Wen Y, Song S, Liu Y, Yan H, Fan C. Adv. Mater., 2010, 22(42): 4754.
[24] Li Z, Zhao B, Wang D, Wen Y, Liu G, Dong H, Song S, Fan C. ACS Appl. Mater. Interfaces, 2014, 6(20): 17944.
[25] Ge Z, Lin M, Wang P, Pei H, Yan J, Shi J, Huang Q, He D, Fan C, Zuo X. Anal. Chem., 2014, 86(4): 2124.
[26] 闻艳丽(Wen Y L), 林美华(Lin M H), 裴昊(Pei H), 鲁娜(Lu N), 樊春海(Fan C H). 化学进展(Progress in Chemistry), 2012, 24(9): 1656.
[27] Kim K R, Lee Y D, Lee T, Kim B S, Kim S, Ahn D R. Biomaterials, 2013, 34(21): 5226.
[28] Lee H, Lytton-Jean A K, Chen Y, Love K T, Park A I, Karagiannis E D, Sehgal A, Querbes W, Zurenko C S, Jayaraman M, Peng C G, Charisse K, Borodovsky A, Manoharan M, Donahoe J S, Truelove J, Nahrendorf M, Langer R, Anderson D G. Nat. Nanotechnol., 2012, 7(6): 389.
[29] Charoenphol P, Bermudez H. Mol. Pharmaceutics, 2014, 11(5): 1721.
[30] Keum J W, Ahn J H, Bermudez H. Small, 2011, 7(24): 3529.
[31] Liu Z, Li Y, Tian C, Mao C. Biomacromolecules, 2013, 14(6): 1711.
[32] Williams S, Lund K, Lin C, Wonka P, Lindsay S, Yan H. DNA Computing: Lecture Notes in Computer Science, Vol.5347(Eds:Goel A, Simmel F C, Sosik P).Berlin/Heidelberg:Springer, 2009.90.
[33] Zhu J H, Wei B, Yuan Y, Mi Y L. Nucleic Acids Res., 2009, 37(7): 2164.
[34] Goodman R P. Bio.Techniques, 2005, 38(4): 548, 550.
[35] Ding Y, Liu X, Zhu J, Wang L, Jiang W. Talanta, 2014, 125: 393.
[36] Ozhalici-Unal H, Armitage B A. ACS Nano, 2009, 3(2): 425.
[37] Erben C M, Goodman R P, Turberfield A J. Angew. Chem., 2006, 45(44): 7414.
[38] Wang Z, Xue Q, Tian W, Wang L, Jiang W. Chem. Commun., 2012, 48(77): 9661.
[39] Schlapak R, Danzberger J, Armitage D, Morgan D, Ebner A, Hinterdorfer P, Pollheimer P, Gruber H J, Schaffler F, Howorka S. Small, 2012, 8(1): 89.
[40] Zhou T, Wang Y, Dong Y, Chen C, Liu D, Yang Z. Bioorg. Med. Chem., 2014, 22(16): 4391.
[41] Keum J W, Bermudez H. Chem. Commun., 2012, 48(99): 12118.
[42] Han D, Huang J, Zhu Z, Yuan Q, You M, Chen Y, Tan W. Chem. Commun., 2011, 47(16): 4670.
[43] Pei H, Liang L, Yao G, Li J, Huang Q, Fan C. Angew. Chem., 2012, 51(36): 9020.
[44] Abi A, Lin M, Pei H, Fan C, Ferapontova E E, Zuo X. ACS Appl. Mater. Interfaces, 2014, 6(11): 8928.
[45] Zhang C, Tian C, Li X, Qian H, Hao C, Jiang W, Mao C. J. Am. Chem. Soc., 2012, 134(29): 11998.
[46] Walsh A S, Yin H, Erben C M, Wood M J, Turberfield A J. ACS Nano, 2011, 5(7): 5427.
[47] Keum J W, Bermudez H. Chem. Commun., 2009, 45: 7036.
[48] Yuan L, Giovanni M, Xie J, Fan C, Leong D T. NPG Asia Mater., 2014, 6(7): e112.
[49] Pei H, Wan Y, Li J, Hu H, Su Y, Huang Q, Fan C. Chem. Commun., 2011, 47(22): 6254.
[50] Ge Z, Pei H, Wang L, Song S, Fan C. Sci. China: Chem., 2011, 54(8): 1273.
[51] Lin M, Wen Y, Li L, Pei H, Liu G, Song H, Zuo X, Fan C, Huang Q. Anal. Chem., 2014, 86(5): 2285.
[52] Wen Y, Pei H, Wan Y, Su Y, Huang Q, Song S, Fan C. Anal. Chem., 2011, 83(19): 7418.
[53] Dong S, Zhao R, Zhu J, Lu X, Li Y, Qiu S, Jia L, Jiao X, Song S, Fan C, Hao R, Song H. ACS Appl. Mater. Interfaces, 2015, 7(16): 8834.
[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Gehui Chen, Nan Ma, Shuaibing Yu, Jiao Wang, Jinming Kong, Xueji Zhang. Immunity and Aptamer Biosensors for Cocaine Detection [J]. Progress in Chemistry, 2023, 35(5): 757-770.
[3] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[4] Dang Zhang, Xi Wang, Lei Wang. Biomedical Applications of Enzyme-Powered Micro/Nanomotors [J]. Progress in Chemistry, 2022, 34(9): 2035-2050.
[5] Keqing Wang, Huimin Xue, Chenchen Qin, Wei Cui. Controllable Assembly of Diphenylalanine Dipeptide Micro/Nano Structure Assemblies and Their Applications [J]. Progress in Chemistry, 2022, 34(9): 1882-1895.
[6] Huayue Sun, Xianxin Xiang, Tingyi Yan, Lijun Qu, Guangyao Zhang, Xueji Zhang. Wearable Biosensors Based on Smart Fibers and Textiles [J]. Progress in Chemistry, 2022, 34(12): 2604-2618.
[7] Qian Peng, Jingjing Zhang, Xinyue Fang, Jie Ni, Chunyuan Song. Surface-Enhanced Raman Spectroscopy on Detection of Myocardial Injury-Related Biomarkers [J]. Progress in Chemistry, 2022, 34(12): 2573-2587.
[8] Huifeng Xu, Yongqiang Dong, Xi Zhu, Lishuang Yu. Novel Two-Dimensional MXene for Biomedical Applications [J]. Progress in Chemistry, 2021, 33(5): 752-766.
[9] Yuanyuan Liu, Yun Guo, Xiaogang Luo, Genyan Liu, Qi Sun. Detection of Metal Ions, Small Molecules and Large Molecules by Near-Infrared Fluorescent Probes [J]. Progress in Chemistry, 2021, 33(2): 199-215.
[10] Yafang Sun, Ziping Zhou, Tong Shu, Lisheng Qian, Lei Su, Xueji Zhang. Multicolor Luminescent Gold Nanoclusters: From Structure to Biosensing and Bioimaging [J]. Progress in Chemistry, 2021, 33(2): 179-187.
[11] Zitao Hu, Yin Ding. Application of Covalent Organic Framework-Based Nanosystems in Biomedicine [J]. Progress in Chemistry, 2021, 33(11): 1935-1946.
[12] Chen Liu, Qiangxiang Li, Di Zhang, Yujie Li, Jinquan Liu, Xilin Xiao. Preparation and Application of MCM-41 Mesoporous Silica in the DNA Biosensors [J]. Progress in Chemistry, 2021, 33(11): 2085-2102.
[13] Han Zhang, Jiawang Ding, Wei Qin. Recent Advances in Peptide-Based Electrochemical Biosensor [J]. Progress in Chemistry, 2021, 33(10): 1756-1765.
[14] Jiaen Xie, Yuheng Luo, Qianling Zhang, Pingyu Zhang. Metal Complexes in Application of Two-Photon Luminescence Probes [J]. Progress in Chemistry, 2021, 33(1): 111-123.
[15] Yang Wang, Chusen Huang, Nengqin Jia. Molecular Fluorescent Probe for Monitoring Cellular Microenvironment and Active Molecules [J]. Progress in Chemistry, 2020, 32(2/3): 204-218.