中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (9): 1167-1181 DOI: 10.7536/PC150210 Previous Articles   Next Articles

• Review and comments •

Light Metal Complex Hydride Hydrogen Storage Systems

Liu Xin1, Wu Chuan1,2, Wu Feng1,2, Bai Ying1,2*   

  1. 1. Beijing Key Laboratory of Environment Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China;
    2. National Development Center of High Technology Green Materials, Beijing 100081, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21476027), the Research Fund for the Doctoral Program of Higher Education of China (No. 20121101110042), and the Program for New Century Excellent Talents in University (No. NCET-13-0033).
PDF ( 1738 ) Cited
Export

EndNote

Ris

BibTeX

The key technology for hydrogen energy effectively is to develop safe, economical and efficient hydrogen storage system. Among all the hydrogen storage technologies at present, solid-state hydrogen storage material has got a lot of attentions because of its outstanding advantages including high density, excellent cycle property, safe and convenient storage mode. Complex hydride material has the highest hydrogen storage density; and light metal complex hydride hydrogen storage systems (LMCHHSS) which have high hydrogen storage density and excellent hydrogen storage property are the research emphasis with good achievements. The decomposition mechanisms, thermodynamic and kinetic properties, cycling performances, crystal structures, research status of LMCHHSS, including borohydride system, alanate system and amide system, are discussed in the paper. At last, some promising research directions to reduce thermodynamic stability, improve kinetic property and cycling hydrogen storage property, such as binary or multicomponent composite system, efficient catalyst nanoparticle, superior reaction environment, or the comprehensive synergistic effect of the above, are suggested for the developing trends of the domain in the future.

Contents
1 Introduction
2 Light metal borohydride hydrogen storage system
2.1 LiBH4 hydrogen storage system
2.2 NaBH4 hydrogen storage system
2.3 KBH4 hydrogen storage system
2.4 Mg(BH4)2 hydrogen storage system
3 Light metal alanate hydrogen storage system
3.1 LiAlH4 hydrogen storage system
3.2 NaAlH4 hydrogen storage system
3.3 Mg(AlH4)2 hydrogen storage system
4 Alkali metalamide hydrogen storage system
4.1 LiNH2 hydrogen storage system
4.2 NaNH2 hydrogen storage system
5 Conclusion and outlook

CLC Number: 

[1] US Department of Energy. Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan-Section 3.3 Hydrogen Storage, 2012. http://energy.gov/sites/prod/files/2014/11/f19/fcto_myrdd_storage.pdf, 2014.
[2] Vajeeston P, Ravindran P, Kjekshus A, Fjellvag H. J. Alloys Compd., 2005, 387: 97.
[3] Smith M B, Bass G E. J. Chem. Eng. Data., 1963, 8(3): 342.
[4] 龙飞(Long F). 北京理工大学硕士论文(Master Dissertation of Beijing Institute of Technology), 2011.
[5] Züttel A, Wenger P, Rensch S, Sudan P, Ph Mauron, Ch Emmenegger. J. Power Sources, 2003, 118(1/2): 1.
[6] Guo L J, Jiao L F, Li L, Wang Q H, Liu G, Du H M, Wu Q, Du J, Yang J Q, Yan C, Wang Y J, Yuan H T. Int. J. Hydrogen Energy, 2013, 38(1): 162.
[7] Xu J, Meng R R, Cao J Y, Gu X F, Qi Z Q, Wang W C, Chen Z D. Int. J. Hydrogen Energy, 2013, 38(6): 2796.
[8] Xu J, Meng R R, Cao J Y, Gu X F, Song W L, Qi Z Q, Wang W C, Chen Z D. J. Alloys Compd., 2013, 564(5): 84.
[9] Yuan P P, Liu B H, Zhu H P, Pan W Y, Li Z P. J. Alloys Compd., 2013, 557: 124.
[10] Meggouh M, Grant D M, Deavin O, Brunelli M, Hansen T C, Walker G S. Int. J. Hydrogen Energy, 2015, 40(7): 2989.
[11] Zhao Y P, Jiao L F, Liu Y C, Guo L J, Li L, Liu H Q, Wang Y J, Yuan H T. Int. J. Hydrogen Energy, 2014, 39(2): 917.
[12] Vajo J J, Skeith S L, Mertens F. J. Phys. Chem. B, 2005, 109(9): 3719.
[13] Ibikunle A A, Sabitu S T, Goudy A J. J. Alloys Compd., 2014, 556: 45.
[14] Kou H Q, Sang G, Huang Z Y, Luo W H, Chen L X, Xiao X Z, Hu C W, Zhou Y L. Int. J. Hydrogen Energy, 2014, 39(13): 7050.
[15] Nakamori Y, Matsuo M, Yamada K, Tsutaoka T, Orimo S. J. Alloys Compd., 2007, 446: 698.
[16] Leng H Y, Wei J, Li Q, Chou K C. J. Alloys Compd., 2014, 597: 136.
[17] Song M Y, Kwak Y J, Lee S H, Park H R. Mater. Res. Bull., 2013, 48(7): 2476.
[18] Wang J S, Han S M, Zhang W, Liang D, Li Y, Zhao X, Wang R B. Int. J. Hydrogen Energy, 2013, 38(34): 14631.
[19] Crosby K, Shaw L L. Int. J. Hydrogen Energy, 2010, 35(14): 7519.
[20] Utke R G, Nielsen T K, Pranzas K, Saldan I, Pistidda C, Karimi F, Laipple D, Skibsted J, Jensen T R, Klassen T, Dornheim M. J. Phys. Chem. C, 2012, 116(1): 1526.
[21] Utke R G, Milanese C, Javadian P, Jepsen J, Laipple D, Karmi F, Puszkiel J, Jensen T R, Marini A, Klassen T, Dornheim M. Int. J. Hydrogen Energy, 2013, 38(8): 3275.
[22] Utke R G, Milanese C, Javadian P, Girella A, Laipple D, Puszkiel J, Cattaneo A S, Ferrara C, Wittayakhun J, Skibsted J, Jensen T R, Marini A, Klassen T, Dornheim M. J. Alloys Compd., 2014, 599: 78.
[23] Wang K K, Kang X D, Luo J H, Hu C H, Wang P. Int. J. Hydrogen Energy, 2013, 38(9): 3710.
[24] Wang K K, Kang X D, Zhong Y J, Hu C H, Wang P. Int. J. Hydrogen Energy, 2014, 39(25): 13369.
[25] Zhong Y J, Kang X D, Wang K K, Wang P. Int. J. Hydrogen Energy, 2014, 39(5): 2187.
[26] Luo J H, Wu H, Zhou W, Kang X D, Wang P. Int. J. Hydrogen Energy, 2013, 38(1): 197.
[27] Tan Y B, Tang Z W, Li S F, Li Q, Yu X B. Int. J. Hydrogen Energy, 2012, 37(23): 18101.
[28] Chen J, He T, Wu G T, Xiong Z T, Chen P. Int. J. Hydrogen Energy, 2013, 38(25): 10944.
[29] Zhang Y, Xiong Z T, Cao H J, Wu G T, Chen P. Int. J. Hydrogen Energy, 2014, 39(4): 1710.
[30] Varin R A, Parviz R. Int. J. Hydrogen Energy, 2012, 37(2): 1584.
[31] Varin R A, Zbroniec L, Polanski M, Filinchuk Y, Cerny R. Int. J. Hydrogen Energy, 2012, 37(21): 16056.
[32] Liu R X, Reed D, Book D. J. Alloys Compd., 2012, 515: 32.
[33] Liu D A, Yang J, Ni J, Drews A. J. Alloys Compd., 2012, 514: 103.
[34] Retnamma R, Novais A Q, Rangel C M. Int. J. Hydrogen Energy, 2011, 36(16): 9772.
[35] Muir S S, Yao X D. Int. J. Hydrogen Energy, 2011, 36(10): 5983.
[36] Amendola S C, Sharp-Goldman S L, Janjua M S, Kelly M T, Petillo P J, Binder M. J. Power Sources, 2000, 85(2): 186.
[37] 许炜(Xu W), 陶占良(Tao Z L), 陈军(Chen J). 化学进展(Progress in Chemistry), 2006, 18(2): 200.
[38] Bennici S, Garron A, Auroux A. Int. J. Hydrogen Energy, 2010, 35(16): 8621.
[39] Kojima Y, Suzuki K I, Fukumoto K, Sasaki M, Yamamoto T, Kawai Y, Hayashi H. Int. J. Hydrogen Energy, 2002, 27(10): 1029.
[40] Delmas J, Laversenne L, Rougeaux I, Capron P, Garron A, Bennici S, Swierczynski D, Auroux A. Int. J. Hydrogen Energy, 2011, 36(3): 2145.
[41] Netskina O V, Ozerova A M, Komova O V, Odegova G V, Simagina V I. Catal. Today, 2014.
[42] Chang J, Tian H J, Du F L. Int. J. Hydrogen Energy, 2014, 39(25): 13087.
[43] Sim J H, Lee C J, Kim T. Energy Proced, 2014, 61: 2058.
[44] Wu C, Bai Y, Liu D X, Wu F, Pang M L, Yi B L. Catal. Today, 2011, 170(1): 33.
[45] Chinnappan A, Jadhav A H, Puguan J M, Ntiamoah R A, Kim H. Energy, 2015, 79: 482.
[46] Eom K, Cho E, Kim M, Oh S, Nam S W, Kwon H. Int. J. Hydrogen Energy, 2013, 38(6): 2804.
[47] Yang B G, Li S L, Jiang Y Y, Wang H. Mater. Sci. Eng. Powder Metall., 2013, 18(4): 516.
[48] Choudhury P, Bhethanabotla V R, Stefanakos E. Phys. Rev. B, 2008, 77(13): 134302.
[49] Kurko S, Aurora A, Gattia D M, Contini V, Montone A, Lovre? R, Novakovi D? J G. Int. J. Hydrogen Energy, 2013, 38(27): 12140.
[50] Guo Y J, Jia J F, Wang X H, Ren Y, Wu H S. Chem. Phys., 2013, 418: 22.
[51] Dovgaliuk I, Hagemann H, Leyssens T, Devillers M, Filinchuk Y. Int. J. Hydrogen Energy, 2014, 39(34): 19603.
[52] Liu R X, Book D. Int. J. Hydrogen Energy, 2014, 39(5): 2194.
[53] Liu R X, Reed D, Book D. J. Alloy Compd., 2012, 515: 32.
[54] Durojaiye T, Ibikunle A, Goudy A J. Int. J. Hydrogen Energy, 2013, 35(19): 10329.
[55] Jiang J J, Wei J, Leng H Y, Li Q, Chou K C. Int. J. Hydrogen Energy, 2013, 38(25): 10919.
[56] Liu Y F, Yang Y J, Zhou Y F, Zhang Y, Gao M X, Pan H G. Int. J. Hydrogen Energy, 2012, 37(22): 17137.
[57] Paduani C. J. Mater. Chem. A, 2015, 3: 819.
[58] Remhof A, Yan Y G, Rentsch D, Borgschulte A, Jensen C M, Züttel A. J. Mater. Chem. A, 2014, 2: 7244.
[59] Dilts J A, Ashby E C. Inorg. Chem., 1972, 11: 1230.
[60] Mustafa N S, Ismail M. Int. J. Hydrogen Energy, 2014, 39(15): 7834.
[61] Li L, Qiu F Y, Wang Y J, Xu Y N, An C H, Liu G, Jiao L F, Yuan H T. Int. J. Hydrogen Energy, 2013, 38(9): 3695.
[62] Fu J, Tegel M, Kieback B, R?ntzsch L. Int. J. Hydrogen Energy, 2014, 39(4): 16362.
[63] Liu S S, Li Z B, Jiao C L, Si X L, Yang L N, Zhang J, Zhou H Y, Huang F L, Gabelica Z, Schick C, Sun L X, Xu F. Int. J. Hydrogen Energy, 2013, 38(6): 2770.
[64] 任晓(Ren X), 王新华(Wang X H),李寿权(Li S Q), 葛红卫(Ge H W). 高等学校化学学报(Chemical Journal of Chinese Universities), 2011, 32(6): 1330.
[65] Zhang J, Bai C G, Pan F S, Luo X D. Ordnance Mater. Sci. Eng., 2008, 31(6): 90.
[66] Bogdanovi D? B, Schwickardi M. J. Alloys Compd., 1997, 253.
[67] Bergemann N, Pistidda C, Milanese C, Girella A, Hansen B R S, Wurr J, Jepsen J, Jensen T R, Marini A, Klassen T, Dornheim M. Int. J. Hydrogen Energy, 2014, 39(18): 9877.
[68] Rongeat C, Jansa I L, Oswald S, Shultz L, Gutfleisch O. Acta. Mater., 2009, 57(18): 5563.
[69] Rongeat C, Scheerbaum N, Schultz L, Gutfleisch O. Acta. Mater., 2011, 59(4): 1725.
[70] Li L, Wang Y, Qiu F Y, Wang Y J, Xu Y N, An C H, Jiao L F, Yuan H T. J. Alloys Compd., 2013, 566: 137.
[71] Wang Y P, Ren Q L, Wang Y J, Li L, Song D W, Jiao L F, Yuan H T. Int. J. Hydrogen Energy, 2010, 35(20): 11004.
[72] Li L, Wang Y J, Wang Y P, Liu G, Han Y, Qiu F Y, Yan C, Song D W, Jiao L F, Yuan H T. J. Alloys Compd., 2011, 509S: 747.
[73] Rafiuddin, Qu X H, Zahid G H, Asghar Z, Shahzad M, Iqbal M, Ahmad E. J. Alloys Compd., 2014, 604: 317.
[74] Bhatnagar A, Pandey S K, Dixit V, Shukla V, Shahi R R, Shaz M A, Srivastava O N. Int. J. Hydrogen Energy, 2014, 39(26): 14240.
[75] Fan X L, Xiao X Z, Chen L X, Li S Q, Wang Q D. J. Alloys Compd., 2011, 509S: 750.
[76] Fan X L, Xiao X Z, Chen L X, Han L Y, Li S Q, Ge H W, Wang Q D. Int. J. Hydrogen Energy, 2011, 36(17): 10861.
[77] Fan X L, Xiao X Z, Shao J, Zhang L T, Li S Q, Ge H W, Wang Q D, Chen L X. Nano Energy, 2013, 2(5): 995.
[78] Minella C B, Lindemann I, Nolis P, Kieling A, Baro M D, Klose M, Giebeler L, Rellinghaus B, Eckert J, Schultz L, Gutfleisch O. Int. J. Hydrogen Energy, 2013, 38(21): 8829.
[79] Li Y, Zhou G, Fang F, Yu X, Zhang Q, Ouyang L, Zhu M, Sun D. Acta. Mater., 2011, 59(4): 1829.
[80] Kim Y Y, Lee E K, Shima J H. J. Alloys Compd., 2006, 422: 283.
[81] Mamatha M, Bogdanovic B, Felderhoff M, Pommerin A, Schmidt W, Schueth F, Weidenthaler C. J. Alloys Compd., 2006, 407: 78.
[82] Wang Y, Li L, Qiu F Y, An C H, Wang Y J, Jiao L F, Yuan H T. J. Energy Chem., 2014, 23(6): 60205.
[83] Wang Y, Wang Y J, Wang X F, Zhang H, Jiao L F, Yuan H T. Int. J. Hydrogen Energy, 2014, 39(31): 17747.
[84] Chen P, Xiong Z T, Luo J Z, Lin J Y, Tan K L. Nature, 2002, 420(6913): 302.
[85] Ichikawa T, Isobe S, Hanada N, Fujii H. J. Alloys Compd., 2004, 365: 271.
[86] Ichikawa T, Hanada N, Isobe S, Leng H Y, Fujii H. J. Alloys Compd., 2005, 404: 435.
[87] Wei J, Leng H Y, Li Q, Chou K C. Int. J. Hydrogen Energy, 2014, 39(25): 13609.
[88] Luo J H, Kang X D, Wang P. Int. J. Hydrogen Energy, 2013, 38(11): 4648.
[89] Chen Y, Wu C Z, Wang P, Cheng H M. Int. J. Hydrogen Energy, 2006, 31(9): 1236.
[90] Ma L P, Wang P, Dai H B, Cheng H M. J. Alloys Compd., 2009, 468: 21.
[91] Niemann M U, Srinivasan S S, Kumar A, Stefanakos E K, Goswami D Y, Mcgrath K. Int. J. Hydrogen Energy, 2009, 34(19): 8086.
[92] Bürger I, Hu J J, Vitillo J G, Kalantzopoulos G N, Deledda S, Fichtner M, Baricco M, Linder M. Int. J. Hydrogen Energy, 2014, 39(16): 8283.
[93] Chu H L, Xiong Z T, Wu G T, Guo J P, Zheng X L, He T, Wu C Z, Chen P. J. Chem. Asian., 2010, 5: 1594.
[94] 何轶伦(He Y L), 杨宝刚(Yang B G), 李松林(Li S L), 姜圆圆(Jiang Y Y), 王行(Wang H). 湖南科技大学学报(自然科学版)(Journal of Hunan University of Science & Techndogy (Natural Science Edition)), 2014, 29(1): 93.
[95] Pireddu G, Valentoni A, Minella C B, Pistidda C, Milanese C, Enzo S, Mulas G, Garroni S. Int. J. Hydrogen Energy, 2015, 40(4): 1829.
[96] Zhang Y, Tian Q F. Int. J. Hydrogen Energy, 2011, 36(16): 9733.
[97] Chater P A, Anderson P A, Prendergast J W, Walton A, Mann V S J, Book D, David W I F, Johnson S R, Edwards P P. J. Alloys Compd., 2007, 446: 350.
[98] Somer M, Acar S, Aydemir U. J. Alloys Compd., 2010, 491: 98.
[99] Wu C, Bai Y, Yang J H, Wu F, Long F. Int. J. Hydrogen Energy, 2012, 37(1): 889.
[100] Bai Y, Wu C, Wu F, Yang J H, Zhao L L, Long F, Yi B L. Int. J. Hydrogen Energy, 2012, 37(17): 12973.
[101] Bai Y, Zhao L L, Wang Y, Liu X, Wu F, Wu C. Int. J. Hydrogen Energy, 2014, 39(25): 13576.
[1] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[2] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[3] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[4] Bolin Zhang, Shengyang Zhang, Shengen Zhang. The Use of Rare Earths in Catalysts for Selective Catalytic Reduction of NOx [J]. Progress in Chemistry, 2022, 34(2): 301-318.
[5] Bai Wenji, Shi Yubing, Mu Weihua, Li Jiangping, Yu Jiawei. Computational Study on Cs2CO3-Assisted Palladium-Catalyzed X—H(X=C,O,N, B) Functionalization Reactions [J]. Progress in Chemistry, 2022, 34(10): 2283-2301.
[6] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.
[7] Changfan Xu, Xin Fang, Jing Zhan, Jiaxi Chen, Feng Liang. Progress for Metal-CO2 Batteries: Mechanism and Advanced Materials [J]. Progress in Chemistry, 2020, 32(6): 836-850.
[8] Chenhui Wei, Heyun Fu, Xiaolei Qu, Dongqiang Zhu. Environmental Processes of Dissolved Black Carbon [J]. Progress in Chemistry, 2017, 29(9): 1042-1052.
[9] Ming Ge, Zhenlu Li. All-Solid-State Z-Scheme Photocatalytic Systems Based on Silver-Containing Semiconductor Materials [J]. Progress in Chemistry, 2017, 29(8): 846-858.
[10] Shiying Yang, Yixuan Zhang, Di Zheng, Jia Xin. Surface Reaction Mechanism of ZVAl Applied in Water Environment:A Review [J]. Progress in Chemistry, 2017, 29(8): 879-891.
[11] Xiaojun Shen, Panli Huang, Jialong Wen, Runcang Sun. Research Status of Lignin Oxidative and Reductive Depolymerization [J]. Progress in Chemistry, 2017, 29(1): 162-178.
[12] Yao Zhen, Dai Boen, Yu Yunfei, Cao Kun. Thiol-Epoxy Click Chemistry and Its Applications in Macromolecular Materials [J]. Progress in Chemistry, 2016, 28(7): 1062-1069.
[13] Liu Ying, He Hongping, Wu Deli, Zhang Yalei. Heterogeneous Catalytic Ozonation Reaction Mechanism [J]. Progress in Chemistry, 2016, 28(7): 1112-1120.
[14] Zhao Yanxia, He Shenggui. Reactivity of Heteronuclear Oxide Clusters with Small Molecules [J]. Progress in Chemistry, 2016, 28(4): 401-414.
[15] Hua Donglong, Zhuang Xiaoyu, Tong Dongshen, Yu Weihua, Zhou Chunhui. Catalytic Oxidehydration of Glycerol to Acrylic Acid [J]. Progress in Chemistry, 2016, 28(2/3): 375-390.