中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (8): 1065-1073 DOI: 10.7536/PC150171 Previous Articles   Next Articles

Enhancing Light-to-Electricity Conversion of Semiconductors by Polyoxometalates and Their Applications in Solar Cells

Li Na, Xu Lin*, Sun Zhixia   

  1. Key Laboratory of Polyoxometalate Science of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun 130024, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21273031).
PDF ( 1417 ) Cited
Export

EndNote

Ris

BibTeX

Polyoxometalates (POMs), being one kind of molecular metal oxides, have structural variety and special physicochemical properties. They have showed broad applications in catalysis, molecule-based functional materials and molecular magnetism. In recent years, POMs can be used as electron acceptor to capture the photogenerated electrons from semiconductors. This facilitates charge separation and restrains electron-hole recombination. Thus the light-to-electricity conversion efficiency is obviously improved, which demonstrates the potential applications in both semiconductor devices and solar cells. In this review, based on our studies and recent literature, we summarize the advance of improving light-to-electricity conversion efficiency by POMs and their application in solar cells, and then make a prospect of future development in this area.

Contents
1 Introduction
2 The promotion to the light-to-electricity conversion efficiency of inorganic semiconductors by POM
3 The promotion to the light-to-electricity conversion efficiency of organic semiconductors by POM
4 The application in solar cells of POM
5 Conclusion

CLC Number: 

[1] 王恩波(Wang E B) , 胡长文(Hu C W) , 许林(Xu L). 多酸化学导论(Introduct Ion of Polyoxometalate Chemistry). 北京: 化学工业出版社(Beijing: Chemical Industry Press) , 1998. 1
[2] Rhule J T, Hil C L l, Judd D A, Schinazi R F. Chem. Rev., 1998, 98: 327.
[3] Long D L, Burkholder E, Cronin L. Chem. Soc. Rev., 2007, 36: 105.
[4] Pope M T, Müller A. Angew. Chem. Int. Ed. Engl., 1991, 30: 34.
[5] Liu S Q, Kurth D G, Volkmer D. Chem. Comm., 2002, 9: 976.
[6] Green M A.Silicon Solar Cells.Advanced Principles and Practice.Sydney: Bridge Printery, 1995. 1.
[7] Green M A, Emery K, Bucher K, King D L, Igari S. Prog. Photovoltaics, 1999, 7(1): 31.
[8] Ozer R R, Ferry J L. Environ. Sci. Technol., 2001, 35: 3242.
[9] Tachikawa T, Tojo S, Fujitsuka M, Majima T. Chem. Eur. J., 2006, 12: 3124.
[10] Hiskia A, Mylonas A, Papaconstantinou E. Chem. Soc. Rev., 2001, 30(1): 62.
[11] Choi W, Park H. J. Phys. Chem. B, 2003, 107: 3885.
[12] 王季陶(Wang J T),刘明登(Liu M D).半导体材料(Semiconductor Materials).北京:高等教育出版社(Beijing: Higher Education Press),1990.
[13] Ozer R R, Ferry J L. Environ. Sci. Technol., 2001, 35: 3242.
[14] Chen X B, Mao S S. Chem. Rev., 2007, 107 : 2891.
[15] Petrella A, Tamborra M, Curri M L, Cosma P, Striccoli M, Cozzoli P D, Agostiano A. J. Phys. Chem. B, 2005, 109: 1554.
[16] Zhang H, Wang G, Chen D, Lv X J, Li J H. Chem. Mater.,2008, 20: 6543.
[17] Chen H, Chen S, Quan X, Yu H T, Zhao H M, Zhang Y B. J. Phys. Chem. C, 2008, 112: 9285.
[18] Sun Z, Xu L, Guo W, Xu B, Liu S, Li F. J. Phys. Chem. C, 2010, 114: 5211.
[19] Wang L, Xu L, Mu Z, Wang C, Sun Z. J. Mater. Chem., 2012, 22: 23627.
[20] Wang L, Xu L, Sun Z, Mu Z. RSC Adv., 2013, 3: 21811.
[21] Sun Z, Fang S, Li F, Xu L, Hu Y, Ren J. J. Photochem. Photobiol. A, 2013, 252: 25.
[22] Sun Z, Li F, Xu L, Liu S, Zhao M, Xu B. J. Phys. Chem., 2012, 116: 6420.
[23] Zhang Y, Zhao Y, Li F, Sun Z, Xu L, Guo X. RSC Adv., 2014, 4: 1362.
[24] Wang T, Sun Z, Li F, Xu L. Electrochem. Commun., 2014, 47: 45.
[25] Grzadziel L, Krzywieckl M, Peisert H. Thin Solid Films, 2011, 519(7): 2187.
[26] Wang Y, Hu N, Zhou Z. J. Mater.Chem., 2011, 21(11): 3779.
[27] Yang Y, Xu L, Li F, Du X, Sun Z. J. Mater. Chem., 2010, 20: 10835.
[28] Sun Z, Fang S, Li F, Xu L, Hu Y, Ren J. J. Photochem. Photobio. A, 2013, 252: 25.
[29] Ahmed I, Farha R, Goldmann M, Ruhlmann L. Chem. Commun., 2013, 49: 496.
[30] Ashwell G J, Hargreaves R C, Baldwin C E, Bahra G S. Brown C R. Nature, 1992, 357: 393.
[31] Huang C H, Wang K Z, Xu G X, Zhao X S, Xie X M, Xu Y, Liu Y Q, Xu L G, Li T K. J. Phys. Chem., 1995, 99: 14397.
[32] Gao L H, Sun Q L, Qi J M, Lin X Y, Wang K Z. Electrochim. Acta, 2013, 92: 236.
[33] 高丽华(Gao L H), 张金凤(Zhang J F), 孙庆玲(Sun Q L), 王科志(Wang K Z). 化学学报(Acta Chim. Sin.), 2012, 70: 441.
[34] Gao L H, Chen X, Lu S, Wang K Z. J. Nanosci. Nanotechnol., 2013, 14: 3808.
[35] Gao L H, Lu S, Su J P, Wang K Z. J. Nanosci. Nanotechnol., 2013, 13: 1377.
[36] Lin X Y, Gao L H, Chen X, Qi J M, Wang K Z. J. Appl. Polymer Sci., 2014, 131: 39871.
[37] Jin G, Wang S M, Chen W L, Qin C, Su Z M, Wang E B. J. Mater. Chem. A, 2013, 1: 6727.
[38] Arici E, Sariciftci N S, Meissner D. Adv. Funct. Mater., 2003, 13(2): 165.
[39] Hardin B E, Snaith H J, McGehee M D. Nature Photonics, 2012, 6(3): 162.
[40] Liang Y, Wu Y, Feng D, Tsai S T, Son H J, Li G, Yu L. J. Am. Chem. Soc., 2009, 131(1): 56.
[41] Parayil S K, Lee Y M, Yoon M. Electrochem. Commun., 2009, 11: 1211.
[42] Sivakumar R, Thomas J, Yoon M. Journal of Photochem. Photobiol. C: Photochem.Rev., 2012, 13: 277.
[43] Luo X, Li F, Xu B, Sun Z, Xu L. J. Mater. Chem., 2012, 22: 15050.
[44] Palilis L C, Vasilopoulou M, Douvas A M, Georgiadou D G, Kennou S, Stathopoulos N A, Constantoudis V, Argitis P. Sol. Energ Mater. Sol. C, 2013, 114: 205.
[45] Li L, Yang Y, Fan R, Wang X, Zhang Q, Zhang L, Yang B, Cao W, Zhang W, Wang Y, Ma L. Dalton Trans., 2014, 43: 1577.
[46] Wang S M, Liu L, Chen W L, Su Z M, Wang E B, Li C. Ind. Eng. Chem. Res., 2014, 53: 150.
[47] Chen L, Sang X J, Li J S, Shan C H, Chen W L, Su Z M, Wang E B. Inorg. Chem. Commun., 2014, 47: 138.
[48] Sang X, Li J, Zhang L, Wang Z, Chen W, Zhu Z, Su Z, Wang E. ACS Appl. Mater. Interfaces, 2014, 6: 7876.
[49] Sang X, Li J, Zhang L, Zhu Z, Chen W, Li Y, Su Z, Wang E. Chem. Commum., 2014, 50: 14678.
[1] Dong Baokun, Zhang Ting, He Fan. Research Progress and Application of Flexible Thermoelectric Materials [J]. Progress in Chemistry, 2023, 35(3): 433-444.
[2] Qiyao Guo, Jialong Duan, Yuanyuan Zhao, Qingwei Zhou, Qunwei Tang. Hybrid Energy Harvesting Solar Cells―From Principles to Applications [J]. Progress in Chemistry, 2023, 35(2): 318-329.
[3] Jing Li, Weigang Zhu, Wenping Hu. Organic Complex Materials and Devices for Near and Shortwave Infrared Photodetection [J]. Progress in Chemistry, 2023, 35(1): 119-134.
[4] Senlin Tang, Huan Gao, Ying Peng, Mingguang Li, Runfeng Chen, Wei Huang. Non-Radiative Recombination Losses and Regulation Strategies of Perovskite Solar Cells [J]. Progress in Chemistry, 2022, 34(8): 1706-1722.
[5] Lin Chen, Jie-Feng Chen, Yi-Ren Liu, Yuyu Liu, Hai-Feng Ling, Ling-Hai Xie. Organic Strained Semiconductors and Their Optoelectronic Properties [J]. Progress in Chemistry, 2022, 34(8): 1772-1783.
[6] Yiling Tan, Shichun Li, Xi Yang, Bo Jin, Jie Sun. Strategies of Improving Anti-Humidity Performance for Metal Oxide Semiconductors Gas-Sensitive Materials [J]. Progress in Chemistry, 2022, 34(8): 1784-1795.
[7] Changle Yue, Wenjing Bao, Jilei Liang, Yunqi Liu, Daofeng Sun, Yukun Lu. Application of POMs-Based Sulfided Catalyst in Hydrodesulfurization and Hydrogen Evolution by Electrolysis of Water [J]. Progress in Chemistry, 2022, 34(5): 1061-1075.
[8] Chenghao Li, Yamin Liu, Bin Lu, Ulla Sana, Xianyan Ren, Yaping Sun. Toward High-Performance and Functionalized Carbon Dots: Strategies, Features, and Prospects [J]. Progress in Chemistry, 2022, 34(3): 499-518.
[9] Chaolumen Xue, Wanru Liu, Tuya Bai, Mingmei Han, Ren Sha, Chuanlang Zhan. Recent Progress on Solar Cell Performance Based on Structural Tailoring on DA'D Units of Nonfullerene Acceptors [J]. Progress in Chemistry, 2022, 34(2): 447-459.
[10] Yuxaun Du, Tao Jiang, Meijia Chang, Haojie Rong, Huanhuan Gao, Yu Shang. Research Progress of Materials and Devices for Organic Photovoltaics Based on Non-Fused Ring Electron Acceptors [J]. Progress in Chemistry, 2022, 34(12): 2715-2728.
[11] Xing Zhan, Wei Xiong, Michael K.H Leung. From Wastewater to Energy Recovery: The Optimized Photocatalytic Fuel Cells for Applications [J]. Progress in Chemistry, 2022, 34(11): 2503-2516.
[12] Hao Hu, Yunpeng He, Shuijin Yang. Preparation of Polyoxometalates@Metal-Organic Frameworks Materials and Their Application in Wastewater Treatment [J]. Progress in Chemistry, 2021, 33(6): 1026-1034.
[13] Ying Yang, Shupeng Ma, Yuan Luo, Feiyu Lin, Liu Zhu, Xueyi Guo. Multidimensional CsPbX3 Inorganic Perovskite Materials: Synthesis and Solar Cells Application [J]. Progress in Chemistry, 2021, 33(5): 779-801.
[14] Ying Yang, Yuan Luo, Shupeng Ma, Congtan Zhu, Liu Zhu, Xueyi Guo. Advances of Electron Transport Materials in Perovskite Solar Cells: Synthesis and Application [J]. Progress in Chemistry, 2021, 33(2): 281-302.
[15] Xiang Xu, Kun Li, Qingya Wei, Jun Yuan, Yingping Zou. Organic Solar Cells Based on Non-Fullerene Small Molecular Acceptor Y6 [J]. Progress in Chemistry, 2021, 33(2): 165-178.