中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (7): 848-852 DOI: 10.7536/PC150169 Previous Articles   Next Articles

Special Issue: 计算化学

• Review and comments •

Computer Simulation Study on the Molecular Design and the Self-Assembly Process of Au-Nanoparticle and Polymer Composite System

Li Yanchun*1, Li Yang2   

  1. 1. State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China;
    2. Key Laboratory of Soybean Molecular Design Breeding,Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130012, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.51403022, 21374043).
PDF ( 1288 ) Cited
Export

EndNote

Ris

BibTeX

Au-nanoparticles have volume effect, surface effect, quantum size effect, macroscopic quantum tunneling effect and other excellent properties. In addition, there are some special properties for Au-nanoparticles, such as good stability, antibacterial function, surface absorption, fluorescence effect belt and so on. Quantum chemistry calculation provides a method to investigate the factors that affect the catalytic and reactive activity of gold clusters at the molecular level, such as the gold cluster size, shape, electronic state, active site and structure, etc. The interaction modes of nanoparticles with ligands and solvent can be better simulated by molecular dynamics, which can also give the behavior of thermodynamic and kinetic. Dissipative particle dynamics mesoscopic simulation method is applied to study the self-assembly process of Au-nanoparticles and polymer composite system, which would be an effective scheme to control the self-assembled structure. To clear the dominant factors influencing the complex structure and properties, to explore the complex regulation mechanism, to propose the main control factors, which is good for the further understanding the nature of Au-nanoparticles and polymer composite system. It is also providing a reliably theoretical help for experiments to prepare and optimize the new kinds of composite materials.

Contents
1 Introduction
1.1 Au-nanoparticles
1.2 Polymers
2 Computer simulation methods
2.1 Quantum chemistry,QC
2.2 Molecular dynamics,MD
2.3 Brownian dynamics,BD
2.4 Dissipative particle dynamics,DPD
3 Assembly of Au-nanoparticles and polymer composites
3.1 Au-nanoparticles and homopolymer
3.2 Au-nanoparticles and copolymer
4 Conclusion

CLC Number: 

[1] Nie Z H, Petukhova A, Kumacheva E. Nat. Nanotechnol., 2010, 5: 15.
[2] He J, Liu Y J, Hood T C, Zhang P, Gong J L, Nie Z H. Nanoscale, 2013, 5: 5151.
[3] Link S, El-Sayed M A. Int. Rev. Phys. Chem., 2000, 19: 409.
[4] Whetten R L, Khoury J T, Alvarez M M, Murthy S, Vezmar I, Wang Z L, Stephens P W, Cleveland C L, Luedtke W D, Landman U. Adv. Mater., 1996, 8: 428.
[5] Li Y, Wang D Q, Wang W, Li Y C, Huang X R, Sun C C, Jin M X. Chem. Res. Chinese U., 2014, 30: 144.
[6] Li Y, Zhu Y L, Li Y C, Qian H J, Sun C C. Mol. Simulat., 2014, 40: 449.
[7] Wu Z N, Li Y C, Liu J L, Lu Z Y, Zhang H, Yang B. Angew. Chem. Int. Ed., 2014, 53: 12196.
[8] Gao Y, Zeng X C. J. Am. Chem. Soc., 2005, 127: 3698.
[9] Shao N, Huang W, Gao Y, Wang L M, Li X, Wang L S, Zeng X C. J. Am. Chem. Soc., 2010, 132: 6596.
[10] Bulusu S, Zeng X C. J. Chem. Phys., 2006, 125: 154303.
[11] Pal R, Wang L M, Huang W, Wang L S, Zeng X C. J. Chem. Phys., 2011, 134: 54306.
[12] Bulusu S, Li X, Wang L S, Zeng X C. J. Phys. Chem. C, 2007, 111: 41908.
[13] Gu X, Bulusu S, Li X, Zeng X C, Li J, Gong X G, Wang L S. J. Phys. Chem. C, 2007, 111: 8228.
[14] Feng J, Pandey R B, Berry R J, Farmer B L, Naik R R, Heinz H. Soft Matter, 2011, 7: 2113.
[15] Iori F, Corni S. J. Comput. Chem., 2008, 29: 1656.
[16] Iori F, Di Felice R, Molinari E, Corni S. J. Comput. Chem., 2009, 30: 1465.
[17] Hughes Z E, Wright L B, Walsh T R. Langmuir, 2013, 29: 13217.
[18] Wright L B, Rodger P M, Corni S, Walsh T R. J. Chem. Theory Comput., 2013, 9: 1616.
[19] Kleiner K, Comas-Vives A, Naderian M, Mueller J E, Fantauzzi D, Mesgar M, Keith J A, Anton J, Jacob T. Adv. Phys. Chem., 2011, 2011: 11.
[20] Bae G T, Aikens C M. J. Phys. Chem. A, 2013, 117: 10438.
[21] Rappe A K, Casewit C J, Colwell K S, Goddard W A, Skiff W M. J. Am. Chem. Soc., 1992, 114: 10024.
[22] O'Boyle N M, Banck M, James C A, Morley C, Vandermeersch T, Hutchison G R. J. Cheminform., 2011, 3: 33.
[23] Garberoglio G. J. Comput. Chem., 2012, 33: 2204.
[24] Huber S E, Warakulwit C, Limtrakul J, Tsukuda T, Probst M. Nanoscale, 2012, 4: 585.
[25] Kokh D B, Corni S, Winn P J, Hoefling M, Gottschalk K E, Wade R C. J. Chem. Theory Comput., 2010, 6: 1753.
[26] Leng Y S, Krstic P S, Wells J C, Cummings P T, Dean D J. J. Chem. Phys., 2005, 122: 244721.
[27] Legenski N, Zhou C G, Zhang Q F, Han B, Wu J P, Chen L A, Cheng H S, Forrey R C. J. Comput. Chem., 2011, 32: 1711.
[28] Lv J, Wang Y C, Zhu L, Ma Y M. J. Chem. Phys., 2012, 137: 84104.
[29] Iacovella C R, Glotzer S C. Soft Matter, 2009, 5: 4492.
[30] Iacovella C R, Glotzer S C. Nano Lett., 2009, 9: 1206.
[31] Phillips C L, Iacovella C R, Glotzer S C. Soft Matter, 2010, 6: 1693.
[32] Li Y, Li Y C. Chem. J. Chinese U., 2014, 35: 1037.
[33] Chen T, Lamm M H, Glotzer S C. J. Chem. Phys., 2004, 121: 3919.
[34] Santos A, Millan J A, Glotzer S C. Nanoscale, 2012, 4: 2640.
[35] Li Y C, Liu H, Huang X R, Sun C C. Chem. J. Chinese U., 2011, 32: 1845.
[36] Li Y C, Liu H, Huang X R, Sun C C. Mol. Simulat., 2011, 37: 875.
[37] Li Y C, Liu H, Huang X R, Sun C C. Chem. J. Chinese U., 2011, 32: 2421.
[38] Li Y C, Wang Y L, Li Z W, Liu H, Lü Z Y. Chin. Sci. Bull., 2013, 58: 3595.
[39] Zhu Y L, Liu H, Li Z W, Qian H J, Milano G, Lu Z Y. J. Comput. Chem., 2013, 34: 2197.
[40] Ma Z W, Li R K Y. J. Colloid Interf. Sci., 2011, 363: 241.
[41] Cui J, Li W, Jiang W. Chinese J. Poly. Sci., 2013, 31: 1225.
[42] Corma A, Concepcion P, Boronat M, Sabater M J, Navas J, Yacaman M J, Larios E, Posadas A, Arturo Lopez-Quintela M, Buceta D, Mendoza E, Guilera G, Mayoral A. Nat. Chem., 2013, 5: 775.
[43] Schmid G. Chem. Soc. Rev., 2008, 37: 1909.
[44] Shichibu Y, Suzuki K, Konishi K. Nanoscale, 2012, 4: 4125.
[45] Bockstaller M R, Thomas E L. J. Phys. Chem. B, 2003, 107: 10017.
[46] Nie Z H, Fava D, Kumacheva E, Zou S, Walker G C, Rubinstein M. Nat. Mater., 2007, 6: 609.
[47] Fava D, Nie Z, Winnik M A, Kumacheva E. Adv. Mater., 2008, 20: 4318.
[48] Nie Z H, Fava D, Rubinstein M, Kumacheva E. J. Am. Chem. Soc., 2008, 130: 3683.
[49] Liu K, Nie Z H, Zhao N N, Li W, Rubinstein M, Kumacheva E. Science, 2010, 329: 197.
[50] Liu K, Ahmed A, Chung S, Sugikawa K, Wu G X, Nie Z H, Gordon R, Kumacheva E. ACS Nano, 2013, 7: 5901.
[51] Wu Z N, Dong C W, Li Y C, Hao H X, Zhang H, Lu Z Y, Yang B. Angew. Chem. Int. Ed., 2013, 52: 9952.
[52] He J, Zhang P, Babu T, Liu Y J, Gong J L, Nie Z H. Chem. Commun., 2013, 49: 576.
[53] He J, Huang X L, Li Y C, Liu Y J, Babu T, Aronova M A, Wang S J, Lu Z Y, Chen X Y, Nie Z H. J. Am. Chem. Soc., 2013, 135: 7974.
[54] He J, Liu Y J, Babu T, Wei Z J, Nie Z H. J. Am. Chem. Soc., 2012, 134: 11342.
[55] Lin J, Wang S J, Huang P, Wang Z, Chen S H, Niu G, Li W W, He J, Cui D X, Lu G M, Chen X Y, Nie Z H. ACS Nano, 2013, 7: 5320.
[56] Huang P, Lin J, Li W W, Rong P F, Wang Z, Wang S J, Wang X P, Sun X L, Aronova M, Niu G, Leapman R D, Nie Z H, Chen X Y. Angew. Chem. Int. Ed., 2013, 52: 13958.
[57] Liu Y J, Li Y C, He J, Duelge K J, Lu Z Y, Nie Z H. J. Am. Chem. Soc., 2014, 136: 2602.
[1] Wanping Zhang, Ningning Liu, Qianjie Zhang, Wen Jiang, Zixin Wang, Dongmei Zhang. Stimuli-Responsive Polymer Microneedle System for Transdermal Drug Delivery [J]. Progress in Chemistry, 2023, 35(5): 735-756.
[2] Ruyue Cao, Jingjing Xiao, Yixuan Wang, Xiangyu Li, Anchao Feng, Liqun Zang. Cascade RAFT Polymerization of Hetero Diels-Alder Cycloaddition Reaction [J]. Progress in Chemistry, 2023, 35(5): 721-734.
[3] Dong Baokun, Zhang Ting, He Fan. Research Progress and Application of Flexible Thermoelectric Materials [J]. Progress in Chemistry, 2023, 35(3): 433-444.
[4] Liu Jun, Ye Daiyong. Research Progress of Antiviral Coatings [J]. Progress in Chemistry, 2023, 35(3): 496-508.
[5] Liangchun Li, Renlin Zheng, Yi Huang, Rongqin Sun. Self-Sorting Assembly in Multicomponent Self-Assembled Low Molecular Weight Hydrogels [J]. Progress in Chemistry, 2023, 35(2): 274-286.
[6] Xuexian Wu, Yan Zhang, Chunyi Ye, Zhibin Zhang, Jingli Luo, Xianzhu Fu. Surface Pretreatment of Polymer Electroless Plating for Electronic Applications [J]. Progress in Chemistry, 2023, 35(2): 233-246.
[7] Qitong Wang, Jiale Ding, Danying Zhao, Yunhe Zhang, Zhenhua Jiang. Dielectric Polymer Materials for Energy Storage Film Capacitors [J]. Progress in Chemistry, 2023, 35(1): 168-176.
[8] Shuai Huang, Yu Tao, Yinliang Huang. Photodeformable Composite Materials Based on Liquid Crystalline Polymers [J]. Progress in Chemistry, 2022, 34(9): 2012-2023.
[9] Meng Wang, He Song, Yewen Li. Three Dimensional Self-Assembled Blue Phase Liquid Crystalline Photonic Crystal [J]. Progress in Chemistry, 2022, 34(8): 1734-1747.
[10] Lijun Bao, Junwu Wei, Yangyang Qian, Yujia Wang, Wenjie Song, Yunmei Bi. Synthesis, Properties and Applications of Enzyme-Responsive Linear-Dendritic Block Copolymers [J]. Progress in Chemistry, 2022, 34(8): 1723-1733.
[11] Zheng Chen, Zhenhua Jiang. Discussion on Some Chemical Problems of Polymer Condensed Statein Solvent-Free Polymer Production Technology [J]. Progress in Chemistry, 2022, 34(7): 1576-1589.
[12] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[13] Fengjing Jiang, Hanchen Song. Graphite-based Composite Bipolar Plates for Flow Batteries [J]. Progress in Chemistry, 2022, 34(6): 1290-1297.
[14] Tianyu Zhou, Yanbo Wang, Yilin Zhao, Hongji Li, Chunbo Liu, Guangbo Che. The Application of Aqueous Recognition Molecularly Imprinted Polymers in Sample Pretreatment [J]. Progress in Chemistry, 2022, 34(5): 1124-1135.
[15] Zhenxing Li, Zhiwang Luo, Ping Wang, Zhenqiang Yu, Erqiang Chen, Helou Xie. Luminescent Liquid Crystalline Polymers: Molecular Fabrication, Structure-Properties and Their Applications [J]. Progress in Chemistry, 2022, 34(4): 787-800.