中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (9): 1158-1166 DOI: 10.7536/PC150167 Previous Articles   Next Articles

• Review and comments •

The Application of Nano Carbon Based Materials in Electrical Conductive Adhesives

Luo Jie1,2, Li Chaowei2,3, Lan Zhuyao2,4, Chen Minghai2*, Yao Yagang2*, Zhao Yue1   

  1. 1. School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China;
    2. Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 21512;
    3. School of Sciences, Shanghai University, Shanghai 20044;
    4. School of Nano Science and Technology, Lanzhou University of Technology, Lanzhou 730050, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 51372265).
PDF ( 1864 ) Cited
Export

EndNote

Ris

BibTeX

Nowadays people have a fancy for good electrically and thermally conductivity adhesives because they have wide applications compared with the ordinary adhesives, especially in the field of electronic packaging. However, the cost is subject to high volume content of the metal fillers, which can't be reduced effectively. This review summarizes the latest research work and analyzes the reported methods aimed to solve this kind of problem in recent years. Nanocarbon materials, such as carbon nanotubes (CNTs) and graphene, have excellent electrical, mechanical and thermal properties, which have been widely used as fillers in the composites. By mixing them with metal fillers, it is able to reduce 10 wt% ~20 wt% content of metal fillers. Especially, CNTs as one-dimensional nano material could bridge the neighboring conductive metal fillers for both reducing the metal content and effectively improving the electrical, mechanical and thermal properties of as-prepared composites. By choosing different polymer matrixes such as thermal plastic and thermal set resin, the mechanical properties of the adhesive can be further improved and satisfy with the packaging requirements of flexible electrical devices. In addition, we think that it is a good way to improve the electrical and thermal properties by sintering the nanoparticles at high temperature, which are synthesized by chemistry reaction.

Contents
1 Introduction
2 The performance of CNTs modified adhesives
2.1 Electrical and mechanical properties
2.2 Thermal properties
3 The performance of graphite and graphene modified adhesives
4 Conclusion and outlook

CLC Number: 

[1] Li Y, Wong C P. Mat. Sci. Eng. R., 2006, 51: 1.
[2] Pike G, Seager C. Phys. Rev. B, 1974, 10: 1421.
[3] Li Y, Moon K S, Wong C P. IEEE Trans. Compon. Packing T., 2006, 29: 173.
[4] Yim M J, Li Y, Moon K S, Paik K W, Wong C P. J. Adhes. Sci. Technol., 2008, 22: 1593.
[5] Li Y, Moon K S, Wong C P. Science., 2005, 308: 1419.
[6] Giliopoulos D J, Triantafyllidis K S, Gournis D. Springer, 2013,188:155.
[7] Ma R, Kwon S, Zheng Q, Kwon H Y, Kim J I, Choi H R, Baik S. Adv. Mater., 2012, 24: 3344.
[8] Wu H, Liu J, Wu X, Ge M, Wang Y, Zhang G, Jiang J. Int. J. Adhes. Adhes., 2006, 26: 617.
[9] Qiao W, Bao H, Li X, Jin S, Gu Z. Int. J. Adhes. Adhes., 2014, 48: 159.
[10] Pu N W, Peng Y Y, Wang P C, Chen C Y, Shi J N, Liu Y M, Ger M D, Chang C L. Carbon, 2014, 67: 449.
[11] Zhang Y, Qi S, Wu X, Duan G. Synthet. Metal., 2011, 161: 516.
[12] 张强(Zhang Q), 黄佳琦(Huang J Q), 赵梦强(Zhao M Q), 骞伟中(Sai W Z),魏飞(Wei F). 中国科学: 化学(Sci.China:Chem.), 2013,(6): 641.
[13] Iijima S. Nature, 1991, 354: 56.
[14] De Volder, M F, Tawfick S H, Baughman R H, Hart A J. Science, 2013, 339: 535.
[15] Iijima S, Brabec C, Maiti A, Bernholc J. J. Chem. Phys., 1996, 104: 2089.
[16] Huang Y, Liang J, Chen Y. Small, 2012, 8: 1805.
[17] Bao W, Miao F, Chen Z, Zhang H, Jang W, Dames C, Lau C N. Nat. Nanotechnol., 2009, 4: 562.
[18] 朱苗淼(Zhu M M), 王汝敏(Wang R M),程雷(Cheng L).中国胶粘剂(China Adhesives), 2010, 19(8): 54.
[19] Chen H, Muthuraman H, Stokes P, Zou J, Liu X, Wang J, Huo Q, Khondaker S I, Zhai L. Nanotechnol., 2007, 18: 415.
[20] Gojny F H, Wichmann M H G, Fiedler B, Kinloch I A, Bauhofer W, Windle A H, Schulte K. Polymer, 2006, 47: 2036.
[21] Ma P C, Siddiqui N A, Marom G, Kim J K. Compos. Part A-Appl. S., 2010, 41: 1345.
[22] Kwon Y, Yim B S, Kim J M, Kim J. Microelectron. Rel., 2011, 51: 812.
[23] Špitalsk Dý Z, Krontiras C A, Georga S N, Galiotis C. Part A-Appl. S., 2009, 40: 778.
[24] Nam S, Cho H W, Soonho Lim, Kim D, Kim H, Sung B J. J. Am. Chem. Soc., 2013,7,851.
[25] Yoon H, Yamashita M, Ata S, Futaba D N, Yamada T, Hata K. Sci. Rep., 2014, 4: 3907.
[26] Ata S, Kobashi K, Yumura M, Hata K. Nano Lett., 2012, 12: 2710.
[27] Kobashi K, Ata S, Yamada T, Futaba D, Yumura M, Hata K. Chem. Sci., 2013, 4: 727.
[28] Santamaria A, Muñoz M E, Fernández M, Landa M. J. Appl. Polym. Sci., 2013, 129: 1643.
[29] Buldum A, Lu J. Phys. Rev. B, 2001, 63:161403.
[30] Stadermann M, Papadakis S, Falvo M, Novak J, Snow E, Fu Q, Liu J, Fridman Y, Boland J, Superfine R, Washburn S. Phys. Rev. B, 2004, 69:201402.
[31] Ma P C, Tang B Z, Kim J K. Carbon, 2008, 46: 1497.
[32] Cui H W, Kowalczyk A, Li D S, Fan Q. Int. J. Adhes. Adhes., 2013, 44: 220.
[33] Durairaj R, Man L W, Ping L J, Pheng L S, Subramaniam R T. Eng. Lett., 2013, 21.
[34] Yang C, Yuen M M, Gao B, Ma Y, Wong C P. J. Electron. Mater., 2011, 40: 78.
[35] Xin F, Li L. Compos. Part A-Appl. S., 2011, 42: 961.
[36] Yang C, Lin W, Li Z, Zhang R, Wen H, Gao B, Chen G, Gao P, Yuen M M, Wong C P. Adv. Funct. Mater., 2011, 21: 4582.
[37] Wang L, Wan C, Wang H, Chen H, Zhu X, Li M. Int. J. Adhes. Adhes., 2013, 45: 132.
[38] Moniruzzaman M, Winey K I. Macromolecules, 2006, 39: 5194
[39] Shenogin S, Xue L P, Rahmi O, Pawel K, J. Appl. Phys., 2004, 95: 8136.
[40] Zhang Z, Zeng X, Zhang L, Zhu P, Zhang K, Fu X, Sun R, Yuen M M F, Wong C P. IEEE, 2013. 301.
[41] Ghaleb Z A, Mariatti M, Ariff Z M. Compos. Part A-Appl. S., 2014, 58: 77.
[42] Mach P, Busek D, Polansky R. IEEE,Electronic System-Integration Technology Conference (ESTC), 2010. 1~5.
[43] Wunderlich B. Springer, 2005. 907.
[44] Li Y, Moon K S, Whitman A, Wong C P. IEEE, 2006, 29: 758.
[45] 张志浩(Zhang Z H), 施利毅(Shi L Y), 代凯(Dai K), 余星昕(Yu X X), 朱惟德(Zhu W D). 功能材料(Functional Materials), 2008, 39: 337.
[46] Lee H H, Chou K S, Shih Z W. Int. J. Adhes. Adhes., 2005, 25: 437.
[47] Chen S, Wu Q, Mishra C, Kang J, Zhang H, Cho K, Cai W, Balandin A A, Ruoff R S. Nat. Mater, 2012, 11: 203.
[48] Stankovich S, Dikin D A, Dommett G H, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S T, Ruoff R S. Nature, 2006, 442: 282.
[49] Chen Y, Zhang X, Zhang D, Yu P, Ma Y. Carbon, 2011, 49: 573.
[50] Park S, Lee K S, Bozoklu G, Cai W, Nguyen S T, Ruoff R S. ACS Nano, 2008, 2: 572.
[51] Dou S, Qi J, Guo X, Yu C. J. Adhes. Sci. Technol., 2014, 28: 1556.
[52] Lin W, Xi X, Yu C. Synthet. Metal., 2009, 159: 619.
[53] Liang T X, Guo W L, Yan Y H, Tang C L. Int. J. Adhes. Adhes., 2008, 28: 55.
[54] Luan V H, Tien H N, Cuong T V, Kong B S, Chung J S, Kim E J, Hur S H. J. Mater. Chem., 2012, 22: 8649.
[55] 赵冬梅(Zhao D M), 李振伟(Li Z W),刘领弟(Liu L D), 张艳红(Zhang Y H), 任德财(Ren D C),李坚(Li J). 化学学报(Acta Chim. Sin.), 2014, 72: 185.
[1] Wang Long, Zhou Qingping, Wu Zhaofeng, Zhang Yanming, Ye Xiaowo, Chen Changxin. Photovoltaic Cells Based on Carbon Nanotubes [J]. Progress in Chemistry, 2023, 35(3): 421-432.
[2] Yong Zhang, Hui Zhang, Yi Zhang, Lei Gao, Jianchen Lu, Jinming Cai. Surface Synthesis of Heteroatoms-Doped Graphene Nanoribbons [J]. Progress in Chemistry, 2023, 35(1): 105-118.
[3] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[4] Hongji Jiang, Meili Wang, Zhiwei Lu, Shanghui Ye, Xiaochen Dong. Graphene-Based Artificial Intelligence Flexible Sensors [J]. Progress in Chemistry, 2022, 34(5): 1166-1180.
[5] Hui Zhang, Wei Xiong, Jianchen Lu, Jinming Cai. Magnetic Properties and Engineering of Nanographene in Ultra-High Vacuum [J]. Progress in Chemistry, 2022, 34(3): 557-567.
[6] Xiaoxiao Xiang, Xiaowen Tian, Huie Liu, Shuang Chen, Yanan Zhu, Yuqin Bo. Controlled Preparation of Graphene-Based Aerogel Beads [J]. Progress in Chemistry, 2021, 33(7): 1092-1099.
[7] Lei Wu, Lihui Liu, Shufen Chen. Flexible Organic Light-Emitting Diodes Using Carbon-Based Transparent Electrodes [J]. Progress in Chemistry, 2021, 33(5): 802-817.
[8] Binbin Zhu, Xiaohui Zheng, Guang Yang, Xu Zeng, Wei Qiu, Bin Xu. Mechanical Property Regulation of Graphene Oxide Separation Membranes [J]. Progress in Chemistry, 2021, 33(4): 670-677.
[9] Suye Lv, Liang Zou, Shouliang Guan, Hongbian Li. Application of Graphene in Neural Activity Recording [J]. Progress in Chemistry, 2021, 33(4): 568-580.
[10] Xiansheng Luo, Hanlin Deng, Jiangying Zhao, Zhihua Li, Chunpeng Chai, Muhua Huang. Synthesis and Application of Holey Nitrogen-Doped Graphene Material(C2N) [J]. Progress in Chemistry, 2021, 33(3): 355-367.
[11] Jianlei Qi, Qinqin Xu, Jianfei Sun, Dan Zhou, Jianzhong Yin. Synthesis, Characterization and Analysis of Graphene-Supported Single-Atom Catalysts [J]. Progress in Chemistry, 2020, 32(5): 505-518.
[12] Le Gong, Rong Yang, Rui Liu, Liping Chen, Yinglin Yan, Zufei Feng. Application of Graphene Quantum Dots in Energy Storage Devices [J]. Progress in Chemistry, 2019, 31(7): 1020-1030.
[13] Jie Liu, Yuan Zeng, Jun Zhang, Haijun Zhang, Jianghao Liu. Preparation, Structures and Properties of Three-Dimensional Graphene-Based Materials [J]. Progress in Chemistry, 2019, 31(5): 667-680.
[14] Aobo Geng, Qiang Zhong, Changtong Mei, Linjie Wang, Lijie Xu, Lu Gan. Applications of Wet-Functionalized Graphene in Rubber Composites [J]. Progress in Chemistry, 2019, 31(5): 738-751.
[15] Xiaojuan Wang, Zhenzhen Liu, Qi Chen, Xiaoqiang Wang, Fang Huang. Interactions between Graphene Materials and Proteins [J]. Progress in Chemistry, 2019, 31(2/3): 236-244.