中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (8): 1087-1092 DOI: 10.7536/PC150166 Previous Articles   Next Articles

Application of Lewis Pair in the Polymerization

Xu Tieqi*, Li Changhong   

  1. School of Chemistry, Dalian University of Technology, Dalian 116023, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21274015) and the Fundamental Research Funds for the Central Universities (No. DUT12LK47).
PDF ( 2078 ) Cited
Export

EndNote

Ris

BibTeX

The catalytic chemistry of Lewis pairs has attracted an explosive level of interest since the “frustrated Lewis pairs” (FLPs) concept was uncovered through the seminal works of Stephan and Erker. Recently, FLPs has been shown to efficiently promote the polymerization of lactones and polar vinyl monomer. Lewis pairs are highly active for polymerization of polar vinyl monomer, affording typically high molecular weight polymers with relatively narrow molecular weight distributions. Especially effective systems are the Lewis pairs (LPs) consisting of the LA Al(C6F5)3 (or B(C6F5)3) and strong LBs, such as phosphines and N-heterocyclic olefins, N-heterocyclic carbenes and phosphazene superbases, for polymerization of methacrylates, acrylamides, 2-vinyl pyridine, 2-isopropenyl-2-oxazoline, α-methylene-γ-butyrolactones, diethyl vinylphosphonate, as well as renewable dissymmetric divinyl polar monomers. Chain initiation involves cooperative addition of LPs to the monomer to generate zwitterionic active species, chain propagation proceeds via a bimetallic, activated-monomer addition mechanism, and chain chain-termination via two pathways: one that proceeds via intramolecular backbiting cyclization involving nucleophilic attack of the activated antepenultimate ester group of the growing chain by the C-ester enolate active chain end to generate a cyclic β-ketoester chain end, and the other that proceeds via intramolecular backbiting cyclization involving nucleophilic attack of the activated adjacent ester group of the growing chain by the O-ester enolate active chain end to generate a δ-valerolactone chain end. Lactones are also polymerize to produce linear or cyclic polymer using FLPs consisting of the LB amine and LAs, such as Zn(C6F5)2, alkylaluminum, and indium chloride.

Contents
1 Introduction
2 Thedevelop of Lewis acid and Lewis base polymerization systems
3 The kind of FLP polymerization systems
4 The polymerizationmechanism of FLP polymerization systems
4.1 Chain initiation and chain propagation
4.2 Chain termination
5 Conclusion and outlook

CLC Number: 

[1] Lewis G N. Valence and the Structure of Atoms and Molecules. NY: Chemical Catalogue Company, 1923.
[2] Brown H C, Schlesinger H I, Cardon S Z. J. Am. Chem. Soc., 1942, 64: 325.
[3] Wittig G, Benz E. Chem. Ber-Recl., 1959, 92: 1999.
[4] Tochtermann W. Angew. Chem. Int. Ed., 1966, 5: 351.
[5] Damico R, Broaddus C D. J. Org. Chem., 1966, 31: 1607.
[6] Lankamp H, Nauta W T, Maclean C. Tetrahedron Lett., 1968, 2: 249.
[7] Okamoto Y, Shimakaw Y. J. Org. Chem., 1970, 35: 3752.
[8] Doering S, Erker G, Frohlich R, Meyer O, Bergander K. Organometallics, 1998, 17: 2183.
[9] Welch G C, Juan R R S, Masuda J D, Stephan D W. Science, 2006, 314: 1124.
[10] 徐莹莹(Xu Y Y),李钊(Li Z),Maxim B, 聂万丽(Nie W L). 化学进展(Progress in Chemistry), 2012, 24(8):1526.
[11] Jiang Y F, Blacque O, Fox T, Berke H. J. Am. Chem. Soc., 2013, 135: 7751.
[12] Houghton A Y, Hurmalainen J, Mansikkamäki A, Piers W E, Tuononen H M. Nat. Chem., 2014, 6: 983.
[13] Stephan D W. Nat. Chem., 2014, 6: 952.
[14] Wei S M, Du H F. J. Am. Chem. Soc., 2014, 136: 12261.
[15] Courtemanche M A, Legare M A, Maron L, Fontaine F G. J. Am. Chem. Soc., 2014, 136: 10708.
[16] Kelly M J, Gilbert J, Tirfoin R, Aldridge S. Angew. Chem. Int. Ed., 2013, 52: 14094.
[17] Chernichenko K, Madarasz A, Papai I, Nieger M, Leskela M, Repo T. Nat. Chem., 2013, 5: 718.
[18] Erker G, Stephan D W. Topics in Current Chemistry: Frustrated Lewis Pairs I. Berlin: Springer Press, 2013.
[19] Chen E Y X. Topics in Current Chemistry, 2013, 334: 39.
[20] Murahashi S, Nozakura S I, Hatada K, Takeuchi S, Aoki T. Sen-iken Nenpo. 1960, 13: 99.
[21] Ikeda M, Hirano T, Tsuruta T. Makromol. Chem., 1971, 150: 127.
[22] Kitayama T, Masuda E, Yamaguchi M, Nishiura T, Hatada K. Polym. J., 1992, 24: 817.
[23] Zhang Y, Miyake G M, Chen E Y X. Angew. Chem. Int. Ed., 2010, 49: 10158.
[24] Zhang Y, Miyake G M, John M G, Falivene L, Caporaso L, Cavallo L, Chen E Y X. Dalton Trans., 2012, 41: 9119.
[25] He J H, Zhang Y T, Chen E Y X. Synlett, 2014, 25: 1534.
[26] Pietrangelo A, Hillmyer M A, Tolman W B. Chem. Commun., 2009, 2736.
[27] Pietrangelo A, Knight S C, Gupta A K, Yao L J, Hillmyer M A, Tolman W B. J. Am. Chem. Soc., 2010, 132: 11649.
[28] Piedra-Arroni E, Ladavière C, Amgoune A, Bourissou D. J. Am. Chem. Soc., 2013, 135: 13306.
[29] Jia Y B, Wang Y B, Ren W M, Xu T Q, Wang J, Lu X B. Macromolecules, 2014, 47: 1966.
[30] Xu T Q, Chen E Y X. J. Am. Chem. Soc., 2014, 136: 1774.
[31] Jia Y B, Ren W M, Liu S J, Xu T Q, Wang Y B, Lu X B. ACS Macro Lett., 2014, 3: 896.
[32] Johnston D S. Adv. Polym. Sci., 1982, 42: 51.
[33] Baskaran D, Müller A H E. Prog. Polym. Sci., 2007, 32: 173.
[34] Baskaran D. Prog. Polym. Sci., 2003, 38: 521.
[35] Chen E Y X. Chem. Rev., 2009, 109: 5157.
[36] Chen E Y X, Mark T J. Chem. Rev., 2000, 100: 1391.
[37] McCahill J S L, Welch G C, Stephan D W. Dalton Trans., 2009, 8555.
[38] He J H, Zhang Y T, Falivene L, Caporaso L, Cavallo L, Chen E Y X. Macromolecules, 2014, 47: 7765.
[1] Ruyue Cao, Jingjing Xiao, Yixuan Wang, Xiangyu Li, Anchao Feng, Liqun Zang. Cascade RAFT Polymerization of Hetero Diels-Alder Cycloaddition Reaction [J]. Progress in Chemistry, 2023, 35(5): 721-734.
[2] Zheng Chen, Zhenhua Jiang. Discussion on Some Chemical Problems of Polymer Condensed Statein Solvent-Free Polymer Production Technology [J]. Progress in Chemistry, 2022, 34(7): 1576-1589.
[3] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[4] Li Jintao, Zhang Mingzu, He Jinlin, Ni Peihong. Application of Deep Eutectic Solvents in Polymer Synthesis [J]. Progress in Chemistry, 2022, 34(10): 2159-2172.
[5] Wentao Li, Hai Zhong, Yaohua Mai. In-Situ Polymerization Electrolytes for Lithium Rechargeable Batteries [J]. Progress in Chemistry, 2021, 33(6): 988-997.
[6] Tingting Heng, Hui Zhang, Mingxue Chen, Xin Hu, Liang Fang, Chunhua Lu. Graft Modification of PVDF-Based Fluoropolymers [J]. Progress in Chemistry, 2021, 33(4): 596-609.
[7] Yena Feng, Shuhe Liu, Shubo Zhang, Tong Xue, Honglin Zhuang, Anchao Feng. Preparation of SiO2/Polymer Nanocomposites Based on Polymerization-Induced Self-Assembly [J]. Progress in Chemistry, 2021, 33(11): 1953-1963.
[8] Xia Li, Hongyan Ma, Xiaojuan Nie, Xu Liu, Chengming Bian, Long Xie. Preparation of Star-Like Polymer Based on Cyclodextrin and Its Application [J]. Progress in Chemistry, 2020, 32(7): 935-942.
[9] Lianwei Sun, Zhonghe Sun, Xue Wang, Lin Xu, Anchao Feng, Liqun Zhang. Synthesis of Polyethylene and Polyhalogenated Olefin by Controlled/“Living” Radical Polymerization [J]. Progress in Chemistry, 2020, 32(6): 727-737.
[10] Guofu Qin, Yihuan Liu, Fan Yin, Xin Hu, Ning Zhu, Kai Guo. Grafting Modification of Lignin via Ring-Opening Polymerization [J]. Progress in Chemistry, 2020, 32(10): 1547-1556.
[11] Kerui Chen, Xin Hu, Jiangkai Qiu, Ning Zhu, Kai Guo. Synthesis of Bottlebrush Polymers by Ring-Opening Metathesis Polymerization [J]. Progress in Chemistry, 2020, 32(1): 93-102.
[12] Huiya Wang, Limin Zhao, Fang Zhang, Dannong He. High-Performance Lithium-Ion Secondary Battery Membranes [J]. Progress in Chemistry, 2019, 31(9): 1251-1262.
[13] Ni Huang, Feng Xu, Jiangbin Xia. Solid State Polymerization of Polythiophene and Its Applications [J]. Progress in Chemistry, 2019, 31(8): 1103-1115.
[14] Shuzhang Qu, Taoyi Zhang, Wei Wang. Olefin Polymerization with Nitrogen-Coordinated Half-Metallocene Catalyst Systems [J]. Progress in Chemistry, 2019, 31(7): 929-938.
[15] Ning Li, Xin Hu, Liang Fang, Jiahui Kou, Yaru Ni, Chunhua Lu. Organocatalyzed Atom Transfer Radical Polymerization [J]. Progress in Chemistry, 2019, 31(6): 791-799.