中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (9): 1182-1190 DOI: 10.7536/PC150165 Previous Articles   Next Articles

• Review and comments •

Platinum Complexes Catalyzed Hydrosilylation of Trichlorosilane and Allyl Chloride

Shao Yuegang1,2, Liu Ji2*, Chen Xiangqian2, Jin Peiyu2, Tang Hongding1*   

  1. 1. College of Chemistry and Molecule Sciences, Wuhan University, Wuhan 43007;
    2. Zhejiang Wynca Chemical Industrial Group Co., Ltd., Jiande 311600, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the China Postdoctoral Science Foundation (No.2015M571900).
PDF ( 1211 ) Cited
Export

EndNote

Ris

BibTeX

As an important intermediate for the production of silane coupling agent, γ-chloropropyl trichlorosilane is mainly obtained by Pt catalyzed hydrosilylation of allyl chloride and trichlorosilane. The industrial scale of γ-chloropropyl trichlorosilane has already exceeded 10000 tons. Despite great success achieved in this field, the hydrosilylation reaction is often accompanied with the low selectivity and high amounts of byproducts. Much progress in this hydrosilylation reaction has been made through the modulation of ligands on platinum complexes and their immobilization during the past decades. This paper reviews the progress in platinum complexes used as catalysts in the hydrosilylation reaction of trichlorosilane and allyl chloride,particularly focus on the impacts of ligands to soluble homogeneous platinum complex catalysts and supported platinum complex catalysts. Meanwhile, the progress in its reaction mechanism is presented. At last, some ideas are provided for future research.

Contents
1 Introduction
2 Homogeneous platinum complexes catalysts
2.1 Speier catalysts
2.2 Karstedt catalysts
2.3 Other homogeneous platinum complexes catalysts
3 Supported platinum complexes catalysts
3.1 Inorganic materials supported platinum complexes catalysts
3.2 Soluble polymer supported platinum complexes catalysts
3.3 Ionic liquids supported platinum complexes catalysts
4 Mechanism study
5 Conclusion

CLC Number: 

[1] Sommer L H, Dorfman E, Goldberg G M, Whitmore F C. J. Am. Chem. Soc., 1946, 68: 488.
[2] Pietrusza E W, Sommer L H, Whitmore F C. J. Am. Chem. Soc., 1948, 70: 484.
[3] 张先亮(Zhang X L),唐红定(Tang H D),廖俊(Liao J). 硅烷偶联剂-原理、合成与应用(Silane Coupling Agent -Principles, Synthesis and Application). 北京: 化学工业出版社(Beijing: Chemical Industry Press), 2012.
[4] 幸松民(Xing S M), 王一璐(Wang Y L). 有机硅合成工艺及产品应用(The Synthesis and Application of Organic Silicon Products). 北京: 化学工业出版社(Beijing: Chemical Industry Press), 2003.
[5] Ryan J W, Menzie G K, Speier J L. J. Am. Chem. Soc., 1960, 82: 3601.
[6] 晨光化工研究院编(Edited by Chenguang Chemical Re-search Institute). 有机硅单体及聚合物(The Monomer and Polymer of Organic Silicon). 北京: 化学工业出版社(Beijing: Chemical Industry Press), 1986, 428.
[7] Белякова З В, Померанцева М Г И, Голубцов С А. ЖОХ. 1964, 35: 1048.
[8] 萧斌(Xiao B). 南昌大学硕士论文(Master Dissertation of Nanchang university), 2006.
[9] Capka M, Janada M. CS 176909, 1979. CA91: 20704.
[10] 胡春野(Hu C Y), 杨荣华(Yang R H), 江英彦(Jiang Y Y). 分子催化(Journal of Molecular Catalysis). 1988, 2(1): 38.
[11] 沙坚(Sha J), 孙玉滨(Sun Y B), 王毅军(Wang Y J),李力(Li L),王晓方(Wang X F). CN 1056881, 1991.
[12] Takeuchi M, Endo M, Kubota T, Kiyomori A, Kubota Y. JP 09192494, 1997. CA127: 205701.
[13] Suzuki M, Imai T. US 4736049, 1998.
[14] 林吉茂(Lin J M), 杨亲正(Yang Q Z), 山东大学学报(自然科学版)(Journal of Shandong University(Natural Science Edition)), 1999, 34(4): 456.
[15] 张中法(Zhang Z F), 黄慧(Huang H),吕彩玲(Lv C L),丁爱梅(Ding A M),郭学阳(Guo X Y),张庆国(Zhang Q G). CN 101624398, 2010.
[16] 丁奎岭(Ding K L),范青华(Fan Q H).不对称催化新概念与新方法(Asymmetric Catalysis: New Concepts and Methods). 北京: 化学工业出版社(Beijing: Chemical Industry Press), 2009.
[17] Capka M, Janda M. CS 176910, 1979.
[18] 胡春野(Hu C Y), 赵东宇(Zhao D Y), 江英彦(Jiang Y Y). 催化学报(Journal of Catalysis), 1989, 10(2): 213.
[19] Kiyomori A, Endo M, Kubota T, Kubota Y, Takeuchi M. JP 07325352, 1997.
[20] Karstedt B. US 3775452 A, 1973.
[21] 汪玉林(Wang Y L), 郑云峰(Zheng Y F), 程建华(Cheng J H),侯建超(Hou J C). 广东化工(Guangdong Chemical Industry). 2010, 37(204): 102.
[22] Roy A K. Adv. Organomet. Chem., 2008, 55: 1.
[23] Hopf A, D?tz K H. J. Mol. Catal. A: Chem., 2000, 164: 191.
[24] MarkóI E, Stérin S, Buisine O, Mignani G, Branlard P, Tinant B, Declercq J-P. Science, 2002, 298: 204.
[25] Belluco U, Bertani R, Michelin R A, Mozzon M. J. Organomet. Chem., 2000, 600: 37.
[26] Sprengers J W, Mars M J, Duin M A, Cavell K J, Elsevier C J. J. Organomet. Chem., 2003, 679: 149.
[27] Isao K, Yohji T, Masuhito O, Tohru K, Kenichi W. US 4292433, 1981.
[28] Marciniec B, Nowicka T, Mirecki J. PL 156241, 1992.
[29] Marciniec B, Gulinski J, Mirecki J. PL 162752, 1994.
[30] Takeuchi M, Endo M, Kubota T, Kiyomori A, Kubota Y. JP 08085624, 1997.
[31] 李月明(Li Y M),范青华(Fan Q H),陈新滋(Chen X Z). 不对称有机反应——催化剂的回收与再利用(Asymmetric Organic Reactions——Recycling and Reuse of Catalysts),北京: 化学工业出版社(Beijing: Chemical Industry Press), 2003.
[32] Fan Q H, Li Y M, Chan A S C. Chem. Rev., 2002, 102: 3385.
[33] Wagner G H. US 2637738 A, 1953.
[34] Thomas K, Steffen S, Christoph B S, Ralf K, Matthias P, Jozef L R H G. US 6153782, 2000.
[35] Christoph B S, Peter P, Rudolf M, Michael A, Ivo V. US 6472549, 2002.
[36] Marciniec B, Kornetka Z W, Urbaniak W. J. Mole.Catal., 1981, 12(2): 221.
[37] 何胜刚(He S G). 有机硅材料及应用(Silicone Material and Application). 1991, (4): 16.
[38] Williams Jr, Robert E. US 4503160, 1985.
[39] 李永军(Li Y J), 江英彦(Jiang Y Y), 催化学报(Journal of Catalysis), 1989, 10(2): 217.
[40] 胡春野(Hu C Y), 汉雪萌(Han X M), 江英彦(Jiang Y Y). 科学通报(Chinese Science Bulletin), 1987, (8): 589.
[41] Hu C Y, Han X M, Jiang Y Y, Liu J G, Shi T Y. J. Macro-mol. Sci. Chem., 1989, A26(2/3): 349.
[42] 刘继(Liu J),马保德(Ma B D),阳年发(Yang N F),范青华(Fan Q H). 化学进展(Progress in Chemistry), 2010, 22(07): 1457.
[43] Fan Q H, Deng G J, Feng Y, He Y M. “Enantioselective Catalysis Using Dendrimer Supports” In Handbook of Asym-metric Heterogeneous Catalysis. Ding K, Uozumi Y (Eds). Wiley-VCH: Weinheim, 2008: 131.
[44] Liu J, Feng Y, Ma B D, He Y M, Fan Q H. Eur. J. Org. Chem. 2012, 34: 6737.
[45] Drake R A, Griffiths B J, Thomas D R. US 5270424, 1993.
[46] Dutkiewicz M, Wawrzynczak A, Fiedorow R, Marciniec B, Gulinski J, Maciejewski H A . Pol., 198291, 2008.
[47] Panster P, Michel R, Buder W, Kleinschmit P. DE 3404703, 1985. CA103: 196232
[48] Wawrzyńczak A, Dutkiewicz M, Guliński J, Maciejewski H, Marciniec B, Fiedorow R. Catal. Today, 2011, 169: 69.
[49] Mikami K. 绿色反应介质在有机合成中的应用(Green Reaction Media In Organic Synthesis).王官武(Wang G W), 张泽(Zhang Z),译. 北京: 化学工业出版社(Beijing: Chemical Industry Press), 2007.
[50] Geisberger G, Auer M, Groessmann A. US 20080045737A1, 2008.
[51] Geisberger G, Auer M, Groessmann A. CN 101130550, 2008.
[52] Taccardi N, Fekete M, Berger M E, Stanjek V, Schulz P S, Wasserscheid P. Applied Catalysis A: General, 2011, 399: 69.
[53] Chalk A J, Harrod J F. J. Am. Chem. Soc., 1965, 87(1): 16.
[54] Белякова З В, Померанцева М Г И, Белцкова З В. ЖОХ. 1979, 44: 2439.
[55] Marciniec B, Maciejewski H, Ducamal W, Fiedorow R, Kitynski D. Appl. Organomet. Chem., 2003, 17: 127.
[56] Gigler P, Drees M, Riener K, Bechlars B, Herrmann W A, Kuhn F E. J. Catal., 2012, 295, 1.
[1] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[2] Shuyang Yu, Wenlei Luo, Jingying Xie, Ya Mao, Chao Xu. Review on Mechanism and Model of Heat Release and Safety Modification Technology of Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(4): 620-642.
[3] Yiming Chen, Huiying Li, Peng Ni, Yan Fang, Haiqing Liu, Yunxiang Weng. Catechol Hydrogel as Wet Tissue Adhesive [J]. Progress in Chemistry, 2023, 35(4): 560-576.
[4] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[5] Zhang Xiaofei, Li Shenhao, Wang Zhen, Yan Jian, Liu Jiaqin, Wu Yucheng. Review on the First-Principles Calculation in Lithium-Sulfur Battery [J]. Progress in Chemistry, 2023, 35(3): 375-389.
[6] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[7] Yanqin Lai, Zhenda Xie, Manlin Fu, Xuan Chen, Qi Zhou, Jin-Feng Hu. Construction and Application of 1,8-Naphthalimide-Based Multi-Analyte Fluorescent Probes [J]. Progress in Chemistry, 2022, 34(9): 2024-2034.
[8] Zonghan Xue, Nan Ma, Weigang Wang. Nitrated Mono-Aromatic Hydrocarbons in the Atmosphere [J]. Progress in Chemistry, 2022, 34(9): 2094-2107.
[9] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[10] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[11] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[12] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[13] Meirong Li, Chenliu Tang, Weixian Zhang, Lan Ling. Performance and Mechanism of Aqueous Arsenic Removal with Nanoscale Zero-Valent Iron [J]. Progress in Chemistry, 2022, 34(4): 846-856.
[14] Fei Wu, Wei Ren, Cheng Cheng, Yan Wang, Heng Lin, Hui Zhang. Biochar-Based Advanced Oxidation Processes for the Degradation of Organic Contaminants in Water [J]. Progress in Chemistry, 2022, 34(4): 992-1010.
[15] Jie Zhao, Shuai Deng, Li Zhao, Ruikai Zhao. CO2 Adsorption Capture in Wet Gas Source: CO2/H2O Co-Adsorption Mechanism and Application [J]. Progress in Chemistry, 2022, 34(3): 643-664.