中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (6): 687-703 DOI: 10.7536/PC150164 Previous Articles   Next Articles

• Supramolecular Chemistry Issue •

Catalytic Applications of Supramolecular Assemblies

Zhao Jin, Liu Yu*   

  1. State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Department of Chemistry, Nankai University, Tianjin 300071, China
  • Received: Revised: Online: Published:
  • Contact: 10.7536/PC150164 E-mail:yuliu@nankai.edu.cn
  • Supported by:
    The work was supported by the State Basic Research Program of China(973 Program) (No.2011CB932502) and the National Natural Science Foundation of China (No. 91227107, 21432004).
PDF ( 5167 ) Cited
Export

EndNote

Ris

BibTeX

The catalytic systems based on supramolecular assemblies have became a hot research topic. The assemblies exhibit unique catalytic properties due to their specific structural characteristics, such as regular arrangement of component, high specific surface area. In this review, the catalytic mechanism and advantages of the supramolecular assemblies in different dimensions are reviewed, and their future developments are also prospected.

Contents
1 Introduction
2 The catalytic applications of zero dimension assemblies
2.1 Micelle based catalytic systems
2.2 Vesicle based catalytic systems
2.3 Nanoparticle based catalytic systems
3 The catalytic applications of one dimension assemblies
3.1 Supramolecular polymer based catalytic systems
3.2 Nanofiber based catalytic systems
3.3 Nanotube based catalytic systems
4 The catalytic applications of two dimension assemblies
5 The catalytic applications of three dimension assemblies
5.1 Gel based catalytic systems
5.2 Framework based catalytic systems
6 Conclusion and outlook

CLC Number: 

[1] Vriezema D M, Aragones M C, Elemans J, Cornelissen J, Rowan A E, Nolte R J M. Chem. Rev., 2005, 105: 1445.
[2] Chen L, Li C J. Org. Lett., 2004, 6: 3151.
[3] Kobayashi S, Wakabayashi T, Nagayama S, Oyamada H. Tetrahedron Lett., 1997, 38: 4559.
[4] Kobayashi S, Wakabayashi T. Tetrahedron Lett., 1998, 39: 5389.
[5] Luo S, Mi X, Liu S, Xu H, Cheng J P. Chem. Commun., 2006: 3687.
[6] Luo S, Xu H, Li J, Zhang L, Mi X, Zheng X, Cheng J P. Tetrahedron, 2007, 63: 11307.
[7] Otto S, Engberts J B F N, Kwak J C T. J. Am. Chem. Soc., 1998, 120: 9517.
[8] Motoda D, Kinoshita H, Shinokubo H, Oshima K. Angew. Chem. Int. Ed., 2004, 43: 1860.
[9] Ryu J H, Jang C J, Yoo Y S, Lim S G, Lee M. J. Org. Chem., 2005, 70: 8956.
[10] Li J, Tang Y, Wang Q, Li X, Cun L, Zhang X, Zhu J, Li L, Deng J. J. Am. Chem. Soc., 2012, 134: 18522.
[11] Yin Y, Huang X, Lv C, Wang L, Yu S, Luo Q, Xu J, Liu J. Macromol. Biosci., 2010, 10: 1505.
[12] Xiao R, Zhou L, Dong Z, Gao Y, Liu J. Chin. J. Chem. 2014, 32: 37.
[13] Schenning A, Spelberg J H L, Hubert D H W, Feiters M C, Nolte R J M. Chem. Eur. J., 1998, 4: 871.
[14] Rispens T, Engberts J B F N. Org. Lett., 2001, 3: 941.
[15] Li H R, Wu L Z, Tung C H. Chem. Commun., 2000, 1085.
[16] Li H R, Wu L Z, Tung C H. J. Am. Chem. Soc., 2000, 122: 2446.
[17] Qin L, Zhang L, Jin Q, Zhang J, Han B, Liu M. Angew. Chem. Int. Ed., 2013, 52: 7761.
[18] Zhang B, Jiang Z, Zhou X, Lu S, Li J, Liu Y, Li C. Angew. Chem. Int. Ed., 2012, 51: 13159.
[19] Gao Q, Liu Y, Lu S M, Li J, Li C. Green Chem., 2011, 13: 1983.
[20] Li J, Hu S, Luo S, Cheng J P. Eur. J. Org. Chem., 2009, 2009: 132.
[21] Spulber M, Baumann P, Saxer S S, Pieles U, Meier W, Bruns N. Biomacromolecules, 2014, 15: 1469.
[22] Vriezema D M, Garcia P M L, Oltra N S, Hatzakis N S, Kuiper S M, Nolte R J M, Rowan A E, van Hest J C M. Angew. Chem. Int. Ed., 2007, 46: 7378.
[23] Berda E B, Foster E J, Meijer E W. Macromolecules, 2010, 43: 1430.
[24] Bonomi R, Cazzolaro A, Sansone A, Scrimin P, Prins L J. Angew. Chem. Int. Ed., 2011, 50: 2307.
[25] Terashima T, Mes T, De Greef T F A, Gillissen M A J, Besenius P, Palmans A R A, Meijer E W. J. Am. Chem. Soc., 2011, 133: 4742.
[26] Artar M, Terashima T, Sawamoto M, Meijer E W, Palmans A R A. J. Polym. Sci., Part A: Polym. Chem., 2014, 52: 12.
[27] Huerta E, Stals P J M, Meijer E W, Palmans A R A. Angew. Chem. Int. Ed., 2013, 52: 2906.
[28] Yun G, Hassan Z, Lee J, Kim J, Lee N S, Kim N H, Baek K, Hwang I, Park C G, Kim K. Angew. Chem. Int. Ed., 2014, 53: 6414.
[29] Lee L C, Zhao Y. J. Am. Chem. Soc., 2014, 136: 5579.
[30] Leger B, Menuel S, Ponchel A, Hapiot F, Monflier E. Adv. Synth. Catal., 2012, 354: 1269.
[31] Mhadgut S C, Palaniappan K, Thimmaiah M, Hackney S A, Torok B, Liu J. Chem. Commun., 2005, 3207.
[32] Zaupa G, Mora C, Bonomi R, Prins L J, Scrimin P. Chem. Eur. J., 2011, 17: 4879.
[33] Pieters G, Prins L J. New J. Chem., 2012, 36: 1931.
[34] Zaramella D, Scrimin P, Prins L J. J. Am. Chem. Soc., 2012, 134: 8396.
[35] Wang Z, Chen G, Ding K. Chem. Rev., 2009, 109: 322.
[36] Liang Y X, Jing Q, Li X, Shi L, Ding K L. J. Am. Chem. Soc., 2005, 127: 7694.
[37] Shi L, Wang X, Sandoval C A, Wang Z, Li H, Wu J, Yu L, Ding K. Chem. Eur. J., 2009, 15: 9855.
[38] 石磊(Shi L), 王正(Wang Z), 王兴旺(Wang X W), 李明星(Li M X), 丁奎岭(Ding K L). 有机化学(Chinese Journal of Organic Chemistry), 2006, 10: 1444.
[39] Shi L, Wang X, Sandoval C A, Li M, Qi Q, Li Z, Ding K. Angew. Chem. Int. Ed., 2006, 45: 4108.
[40] Yu L, Wang Z, Wu J, Tu S, Ding K. Angew. Chem. Int. Ed., 2010, 49: 3627.
[41] Park Y J, Park J W, Jun C H. Acc. Chem. Res., 2008, 41: 222.
[42] Kim D W, Lim S G, Jun C H. Org. Lett., 2006, 8: 2937.
[43] Park J W, Park J H, Jun C H. J. Org. Chem., 2008, 73: 5598.
[44] De Torres M, van Hameren R, Nolte R J M, Rowan A E, Elemans J A A W. Chem. Commun., 2013, 49: 10787.
[45] Fruehbeiβer S, Grohn F. J. Am. Chem. Soc., 2012, 134: 14267.
[46] Yin P, Bayaguud A, Cheng P, Haso F, Hu L, Wang J, Vezenov D, Winans R E, Hao J, Li T, Wei Y, Liu T. Chem. Eur. J., 2014, 20: 9589.
[47] Escuder B, Rodriguez-Llansola F, Miravet J F. New J. Chem., 2010, 34: 1044.
[48] Guler M O, Stupp S I. J. Am. Chem. Soc., 2007, 129: 12082.
[49] Khalily M A, Ustahuseyin O, Garifullin R, Genc R, Guler M O. Chem. Commun., 2012, 48: 11358.
[50] Tang Y, Zhou L, Li J, Luo Q, Huang X, Wu P, Wang Y, Xu J, Shen J, Liu J. Angew. Chem. Int. Ed., 2010, 49: 3920.
[51] Wang L, Zou H, Dong Z, Zhou L, Li J, Luo Q, Zhu J, Xu J, Liu J. Langmuir, 2014, 30: 4013.
[52] Li Z Q, Zhang Y M, Chen Y, Liu Y. Chem. Eur. J., 2014, 20: 8566.
[53] Jin Q, Zhang L, Cao H, Wang T, Zhu X, Jiang J, Liu M. Langmuir, 2011, 27: 13847.
[54] Huang Z, Guan S, Wang Y, Shi G, Cao L, Gao Y, Dong Z, Xu J, Luo Q, Liu J. J. Mater. Chem. B, 2013, 1: 2297.
[55] Komatsu T, Terada H, Kobayashi N. Chem. Eur. J., 2011, 17: 1849.
[56] De Oliveira R F, de Moraes M L, Oliveira O N, Ferreira M. J. Phys. Chem. C, 2011, 115: 19136.
[57] Liu Y, Yan Y L, Lei J, Wu F, Ju H. Electrochem. Commun., 2007, 9: 2564.
[58] Wang Q, Yang Z, Wang L, Ma M, Xu B. Chem. Commun., 2007, 1032.
[59] Wang Q, Yang Z, Gao Y, Ge W, Wang L, Xu B. Soft Matter, 2008, 4: 550.
[60] Wang Q, Yang Z, Zhang X, Xiao X, Chang C K, Xu B. Angew. Chem. Int. Ed., 2007, 46: 4285.
[61] Wang Q, Yang Z, Ma M, Chang C K, Xu B. Chem. Eur. J., 2008, 14: 5073.
[62] Miravet J F, Escuder B. Chem. Commun., 2005, 5796.
[63] Liu Y R, He L, Zhang J, Wang X, Su C Y. Chem. Mater., 2009, 21: 557.
[64] Rodriguez-Llansola F, Escuder B, Miravet J F. Org. Biomol. Chem., 2009, 7: 3091.
[65] Rodriguez-Llansola F, Miravet J F, Escuder B. Chem. Commun., 2009, 7303.
[66] Rodriguez-Llansola F, Escuder B, Miravet J F. J. Am. Chem. Soc., 2009, 131: 11478.
[67] Rodriguez-Llansola F, Miravet J F, Escuder B. Chem. Eur. J., 2010, 16: 8480.
[68] Sharma C V K, Broker G A, Huddleston J G, Baldwin J W, Metzger R M, Rogers R D. J. Am. Chem. Soc., 1999, 121: 1137.
[69] Shultz A M, Farha O K, Hupp J T, Nguyen S T. J. Am. Chem. Soc., 2009, 131: 4204.
[70] Sun C Y, Liu S X, Liang D D, Shao K Z, Ren Y H, Su Z M. J. Am. Chem. Soc., 2009, 131: 1883.
[71] Ma F J, Liu S X, Sun C Y, Liang D D, Ren G J, Wei F, Chen Y G, Su Z M. J. Am. Chem. Soc., 2011, 133: 4178.
[1] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[2] Yuewen Shao, Qingyang Li, Xinyi Dong, Mengjiao Fan, Lijun Zhang, Xun Hu. Heterogeneous Bifunctional Catalysts for Catalyzing Conversion of Levulinic Acid to γ-Valerolactone [J]. Progress in Chemistry, 2023, 35(4): 593-605.
[3] Yixue Xu, Shishi Li, Xiaoshuang Ma, Xiaojin Liu, Jianjun Ding, Yuqiao Wang. Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts [J]. Progress in Chemistry, 2023, 35(4): 509-518.
[4] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[5] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[6] Leyi Wang, Niu Li. Relation Among Cu2+, Brønsted Acid Sites and Framework Al Distribution: NH3-SCR Performance of Cu-SSZ-13 Formed with Different Templates [J]. Progress in Chemistry, 2022, 34(8): 1688-1705.
[7] Qiyue Yang, Qiaomei Wu, Jiarong Qiu, Xianhai Zeng, Xing Tang, Liangqing Zhang. Catalytic Conversion of Bio-Based Platform Compounds to Fufuryl Alcohol [J]. Progress in Chemistry, 2022, 34(8): 1748-1759.
[8] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[9] Dongxue Han, Xue Jin, Wangen Miao, Tifeng Jiao, Pengfei Duan. Responsiveness of Excited State Chirality Based on Supramolecular Assembly [J]. Progress in Chemistry, 2022, 34(6): 1252-1262.
[10] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[11] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[12] Yangyang Liu, Zigang Zhao, Hao Sun, Xianghui Meng, Guangjie Shao, Zhenbo Wang. Post-Treatment Technology Improves Fuel Cell Catalyst Stability [J]. Progress in Chemistry, 2022, 34(4): 973-982.
[13] Shujin Shen, Cheng Han, Bing Wang, Yingde Wang. Transition Metal Single-Atom Electrocatalysts for CO2 Reduction to CO [J]. Progress in Chemistry, 2022, 34(3): 533-546.
[14] Hongyu Chu, Tianyu Wang, Chong-Chen Wang. Advanced Oxidation Processes (AOPs) for Bacteria Removal over MOFs-Based Materials [J]. Progress in Chemistry, 2022, 34(12): 2700-2714.
[15] Yuanju Jing, Chun Kang, Yanxin Lin, Jie Gao, Xinbo Wang. MXene-Based Single-Atom Catalysts: Synthesis and Electrochemical Catalysis [J]. Progress in Chemistry, 2022, 34(11): 2373-2385.