中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (9): 1302-1312 DOI: 10.7536/PC150162 Previous Articles   Next Articles

• Review and comments •

Preparation of Silicon Nanocrystals and Their Applications in Solar Cells

Liu Chao1, Tan Ruiqin1*, Zeng Yuheng2, Wang Weiyan2, Huang Jinhua2, Song Weijie2   

  1. 1. Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China;
    2. Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21377063, 61106096, 61574145), the Natural Science Foundation of Zhejiang Province (No. LY15F040003), the Natural Science Foundation of Ningbo (No. 2014A610036 ), and K. C. Wong Magna Fund in Ningbo University.
PDF ( 1563 ) Cited
Export

EndNote

Ris

BibTeX

Because of the quantum confinement effect, silicon nanocrystals exhibit some new features different from bulk silicon, such as enhanced photoluminescence and adjustable optical band gap, etc. Silicon nanocrystals have attracted much attention in the fields of microelectronics, photovoltaic, biomedicine and so on. In this paper, the different preparation methods of freestanding silicon nanocrystals and silicon nanocrystals embedded in thin films are reviewed, the advantages and disadvantages of different preparation methods are analyzed. Furthermore, the applications of silicon nanocrystals are focused on photovoltaic, including solar cells made up of pure silicon-nanocrystal films, organic solar cells combined with silicon nanocrystals, and silicon nanocrystals ink for solar cells.

Contents
1 Introduction
2 Synthesis of Si nanocrystals
2.1 Synthesis of freestanding Si nanocrystals
2.2 Synthesis of Si nanocrystals embedded in films
3 Applications of Si nanocrystals in solar cells
3.1 Si nanocrystal films as the emitter or optical absorb layer in solar cells
3.2 Organic solar cells combined with silicon nanocrystals
3.3 Silicon nanocrystals ink for solar cells
4 Conclusion

CLC Number: 

[1] Barbagiovanni E G, Lockwood D J, Simpson P J, Goncharova L V. Applied Physics Reviews, 2014, 1(1): 011302
[2] Cullis A G, Canham L T. Nature, 1991, 353(6342): 335.
[3] Hua F, Swihart M T, Ruckenstein E. Langmuir, 2005, 21(13): 6054.
[4] Zacharias M, Heitmann J, Scholz R, Kahler U, Schmidt M, Bläsing J. Applied Physics Letters, 2002, 80(4): 661.
[5] Luo J W, Stradins P, Zunger A. Ener. Environ. Sci., 2011, 4(7): 2546.
[6] Beard M C, Knutsen K P, Yu P, Luther J M, Song Q, Metzger W K, Ellingson R J, Nozik A J. Nano Lett., 2007, 7(8): 2506.
[7] Priolo F, Gregorkiewicz T, Galli M, Krauss T F. Nat. Nanotechnol., 2014, 9(1): 19.
[8] Mangolini L. Journal of Vacuum Science & Technology B, 2013, 31(2): 020801.
[9] Pavesi L, Turan R. Silicon Nanocrystals: Fundamentals, Synthesis and Applications, Wiley-VCH, 2010.1.
[10] Green M A. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2013, 371(1996): 20110413.
[11] Feltrin A, Freundlich A. Renewable Energy, 2008, 33(2): 180.
[12] Green M A. Third Generation Photovoltaics: Advanced Solar Energy Conversion. Springer. 2006.
[13] Green M A. Prog. Photovoltaics, 2001, 9(2): 123.
[14] 熊绍珍(Xiong S Z), 朱美芳(Zhu M F). 太阳能电池基础与应用(Solar Cell Fundamentals and Applications). 北京: 科学出版社(Beijing: Science Press), 2009.
[15] Shockley W, Queisser H J. Journal of Applied Physics, 1961, 32(3): 510.
[16] Conibeer G. Silicon Nanocrystals: Fundamentals, Synthesis and Applications, Wiley-VCH, 2010. 555.
[17] L?per P, Hartel A, Künle M, Hiller D, Janz S, Hermle M, Zacharias M, Glunz S. Silicon Quantum Dot Absorber Layers for All-Silicon Tandem Solar Cells: Optical and Electrical Characterisation. 24th European Photovoltaic Solar Energy Conference and Exhibition. Hamburg, Germany. 2009.
[18] Alam M, Flagan R. Aerosol Science and Technology, 1986, 5(2): 237.
[19] Ostraat M L, de Blauwe J W, Green M L, Bell L D, Atwater H A, Flagan R C. J. Electrochem. Soc., 2001, 148(5): G265.
[20] Ostraat M L, de Blauwe J W, Green M L, Bell L D, Brongersma M, Casperson J, Flagan R, Atwater H. Appl. Phys. Lett., 2001, 79(3): 433.
[21] Cannon W R, Danforth S C, Flint J, Haggerty J, Marra R. J. Amer. Chem. Soc., 1982, 65(7): 324.
[22] Ehbrecht M, Kohn B, Huisken F, Laguna M, Paillard V. Phys. Rev. B, 1997, 56(11): 6958.
[23] Werwa E, Seraphin A, Chiu L, Zhou C, Kolenbrander K. Appl. Phys. Lett., 1994, 64(14): 1821.
[24] Hirasawa M, Orii T, Seto T. Appl. Phys. Lett., 2006, 88(9): 093119.
[25] Goldstein A, Echer C, Alivisatos A. Science, 1992, 256(5062): 1425.
[26] Takagi H, Ogawa H, Yamazaki Y, Ishizaki A, Nakagiri T. Appl. Phys. Lett., 1990, 56(24): 2379.
[27] Gresback R, Nozaki T, Okazaki K. Nanotechnology, 2011, 22(30): 305605.
[28] Yasar-Inceoglu O, Lopez T, Farshihagro E, Mangolini L. Nanotechnology, 2012, 23(25): 255604.
[29] Wheeler L M, Neale N R, Chen T, Kortshagen U R. Nat. Commun., 2013, 4: 2197.
[30] Bley R A, Kauzlarich S M. J. Amer. Chem. Soc., 1996, 118(49): 12461.
[31] Mayeri D, Phillips B L, Augustine M P, Kauzlarich S M. Chem. Mater., 2001, 13(3): 765.
[32] Zou J, Baldwin R K, Pettigrew K A, Kauzlarich S M. Nano Lett., 2004, 4(7): 1181.
[33] Hessel C M, Reid D, Panthani M G, Rasch M R, Goodfellow B W, Wei J, Fujii H, Akhavan V, Korgel B A. Chem. Mater., 2011, 24(2): 393.
[34] Lu Z, Lockwood D, Baribeau J M. Nature, 1995, 378(6554): 258.
[35] Lockwood D, Lu Z, Baribeau J M. Phys. Rev. Lett., 1996, 76(3): 539.
[36] Zacharias M, Blasing J, Veit P, Tsybeskov L, Hirschman K, Fauchet P. Appl. Phys. Lett., 1999, 74(18): 2614.
[37] Park N M, Choi C J, Seong T Y, Park S J. Phys. Rev. Lett., 2001, 86(7): 1355.
[38] Park N M, Kim T S, Park S J. Appl. Phys. Lett., 2001, 78(17): 2575.
[39] Kim B H, Cho C H, Kim T W, Park N M, Sung G Y, Park S J. Appl. Phys. Lett., 2005, 86(9): 091908.
[40] Kim T W, Cho C H, Kim B H, Park S J. Appl. Phys. Lett., 2006, 88(12): 123102.
[41] Cho E, Green M, Conibeer G, Song D, Cho Y, Scardera G, Huang S, Park S, Hao X, Huang Y. Opto. Electr., 2007, 69578.
[42] Song D, Cho E C, Cho Y H, Conibeer G, Huang Y, Huang S, Green M A. Thin Solid Films, 2008, 516(12): 3824.
[43] Wan Z, Huang S, Green M A, Conibeer G. Nano Res. Lett., 2011, 6: 129.
[44] Green M A. Prog. Photovoltaics, 2001, 9(2):123.
[45] Green M A. 2008 5th IEEE International Conference on Group Ⅳ Photonics, 2008, 389.
[46] Conibeer G. Materials Today, 2007, 10: 42.
[47] Pavesi L, Turan R. Silicon Nanocrystals: Fundamentals, Synthesis and Applications, Wiley-VCH. 2010. 550.
[48] Kazmerski L L. Journal of Electron Spectroscopy and Related Phenomena, 2006, 150(2): 105.
[49] Pavesi L, Turan R. Silicon Nanocrystals: Fundamentals, Synthesis and Applications. Wiley-VCH. 2010. 1.
[50] 彭华(Peng H), 周之斌(Zhou Z B), 崔容强(Cui R Q), 叶庆好(Ye Q H), 庞乾骏(Pang Q J), 陈鸣波(Chen M B), 赵亮(Zhao L). 半导体学报(Journal of Semiconductors), 2005, 26(5): 958.
[51] Hariskos D, Spiering S, Powalla M. Thin Solid Films, 2005, 480: 99.
[52] Ross R T, Nozik A J. J. Appl. Phys., 1982, 53(5): 3813.
[53] Huang S, Conibeer G. J. Phys. D: Appl. Phys., 2013, 46(2): 024003.
[54] Green M, Conibeer G, Cho E, Konig D, Huang S, Song D, Scardera G, Cho Y, Hao X, Fangsuwannarak T. Proceedings 22nd EU PVSEC. Milan, Italy, 2007.
[55] Huang J, Zeng Y, Wang W, Yang Y, Huang J, Tan R, Dai S, Dai N, Song W. Phys. Status. Solidi A, 2013, 210(3): 528.
[56] Conibeer G, Green M, Corkish R, Cho Y, Cho E C, Jiang C W, Fangsuwannarak T, Pink E, Huang Y, Puzzer T. Thin Solid Films, 2006, 511: 654.
[57] Hao X, Cho E, Flynn C, Shen Y, Park S, Conibeer G, Green M. Sol. Energy Mater. Sol. Cells, 2009, 93(2): 273.
[58] Hao X, Cho E C, Scardera G, Bellet-Amalric E, Bellet D, Shen Y, Huang S, Huang Y, Conibeer G, Green M. Thin Solid Films, 2009, 517(19): 5646.
[59] Chan T L, Tiago M L, Kaxiras E, Chelikowsky J R. Nano Lett., 2008, 8(2): 596.
[60] Shim M, Guyot-Sionnest P. Nature, 2000, 407(6807): 981.
[61] Zeng Y, Chen L, Liu G, Xu H, Song W. RSC Adv., 2014, 4(105): 60948.
[62] Chen X, Pi X, Yang D. J. Phys. Chem. C, 2010, 115(3): 661.
[63] Ni Z, Pi X, Yang D. Phys. Rev. B, 2014, 89(3): 035312.
[64] Pi X, Chen X, Yang D. J. Phys. Chem. C, 2011, 115(20): 9838.
[65] Ma J, Wei S H, Neale N R, Nozik A J. Appl. Phys. Lett., 2011, 98(17): 173103.
[66] Cho E C, Park S, Hao X, Song D, Conibeer G, Park S C, Green M A. Nanotechnology, 2008, 19(24): 245201.
[67] Yu X, Yu W, Wang X, Zheng Y, Zhang J, Jiang Z, Fu G. Superlattices and Microstructures, 2015, 78: 88.
[68] Gutsch S, Laube J, Hiller D, Bock W, Wahl M, Kopnarski M, Gnaser H, Puthen-Veettil B, Zacharias M. Appl. Phys. Lett., 2015, 106(11): 113103.
[69] Zeng Y, Dai N, Cheng Q, Huang J, Liang X, Song W. Mat. Sci. Semicon. Proc., 2013, 16(3): 598.
[70] Wang W, Huang J, Xu W, Huang J, Zeng Y, Song W. Journal of Materials Science: Materials in Electronics, 2013, 24(6): 2122.
[71] Cheng Q, Zeng Y, Huang J, Dai N, Yang Y, Tan R, Liang X, Song W. Physica E, 2013, 53: 36.
[72] Huang J, Zeng Y, Tan R, Wang W, Yang Y, Dai N, Song W. Appl. Surf. Sci., 2013, 270: 428.
[73] Lechner R, Stegner A R, Pereira R N, Dietmueller R, Brandt M S, Ebbers A, Trocha M, Wiggers H, Stutzmann M. J. Appl. Phys., 2008, 104(5): 053701.
[74] Balberg I, Jedrzejewski J, Savir E. Phys. Rev. B, 2011, 83(3): 035318.
[75] Balberg I. J. Appl. Phys., 2011, 110(6): 061301.
[76] Antonova I V, Gulyaev M, Savir E, Jedrzejewski J, Balberg I. Phys. Rev. B, 2008, 77(12): 125318.
[77] Aharoni L, Azulay D, Millo O, Balberg I. Appl. Phys. Lett., 2008, 92(11): 112109.
[78] Balberg I, Savir E, Jedrzejewski J, Nassiopoulou A G, Gardelis S. Phys. Rev. B, 2007, 75(23): 235329.
[79] Balberg I, Dover Y, Naides R, Conde J, Chu V. Phys. Rev. B, 2004, 69(3): 035203.
[80] Balberg I, Naidis R, Fonseca L, Weisz S, Conde J, Alpuim P, Chu V. Phys. Rev. B, 2001, 63(11): 113201.
[81] Crandall R S, Mahan A H, Nelson B, Vanecek M, Balberg I. Properties of Hydrogenated Amorphous Silicon Produced at High Temperature. AIP. 1992.
[82] R?lver R, Berghoff B, Bätzner D, Spangenberg B, Kurz H, Schmidt M, Stegemann B. Thin Solid Films, 2008, 516(20): 6763.
[83] Gutsch S, Laube J, Hartel A, Hiller D, Zakharov N, Werner P, Zacharias M. J. Appl. Phys., 2013, 113(13): 133703.
[84] Bergren M R, Simonds B J, Yan B, Yue G, Ahrenkiel R, Furtak T E, Collins R T, Taylor P C, Beard M C. Phys. Rev. B, 2013, 87(8): 081301.
[85] Song D, Cho E C, Conibeer G, Huang Y, Green M A. Applied Physics Letters, 2007, 91(12): 123510.
[86] Perez-Wurfl I, Ma L, Lin D, Hao X, Green M, Conibeer G. Sol. Energy Mater. Sol. Cells, 2012, 100: 65.
[87] Song D, Cho E C, Conibeer G, Huang Y, Flynn C, Green M A. Silicon Nanocrystals in SiC Matrix for Third Generation Photovoltaic Solar Cells. Is Solar Our Only Nuclear Option?-ANZSES.Solar 2007, 2007.
[88] Aroutiounian V M, Petrosyan S, Khachatryan A, Touryan K J. Quantum Dot Solar Cells. International Symposium on Optical Science and Technology. International Society for Optics and Photonics. 2001.
[89] Yamada S, Kurokawa Y, Miyajima S, Konagai M. Nanoscale Res. Lett., 2014, 9(1): 246.
[90] Loper P, Canino M, Qazzazie D, Schnabel M, Allegrezza M, Summonte C, Glunz S W, Janz S, Zacharias M. Applied Physics Letters, 2013, 102(3): 033507.
[91] Liu C Y, Holman Z C, Kortshagen U R. Nano Lett., 2008, 9(1): 449.
[92] Liu C Y, Kortshagen U R. Nanoscale, 2012, 4(13): 3963.
[93] Branz H M, Yost V E, Ward S, Jones K M, To B, Stradins P. Appl. Phys. Lett., 2009, 94(23): 231121.
[94] Strehlke S, Bastide S, Guillet J, Levy-Clement C. Mat. Sci. Eng. B-Solid, 2000, 69: 81.
[95] Chaoui R, Mahmoudi B, Si Ahmed Y. Phys. Status. Solidi A, 2008, 205(7): 1724.
[96] Pi X, Li Q, Li D, Yang D. Sol. Energy Mater. Sol. Cells, 2011, 95(10): 2941.
[97] Sgrignuoli F, Paternoster G, Marconi A, Ingenhoven P, Anopchenko A, Pucker G, Pavesi L. J. Appl. Phys., 2012, 111(3): 034303.
[98] Sacks J, Savidge R M, Gabr A, Walker A, Beal R, Wheeldon J, Knights A P, Mascher P, Hinzer K, Kleiman R N. Quantum Efficiency Measurements of Down-Shifting Using Silicon Nanocrystals for Photovoltaic Applications. Photovoltaic Specialists Conference (PVSC), 2012 38th IEEE. 2012.
[1] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[2] Qiyao Guo, Jialong Duan, Yuanyuan Zhao, Qingwei Zhou, Qunwei Tang. Hybrid Energy Harvesting Solar Cells―From Principles to Applications [J]. Progress in Chemistry, 2023, 35(2): 318-329.
[3] Xuan Li, Jiongpeng Huang, Yifan Zhang, Lei Shi. 1D Nanoribbons of 2D Materials [J]. Progress in Chemistry, 2023, 35(1): 88-104.
[4] Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao. Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2022, 34(6): 1337-1347.
[5] Caiwei Wang, Dongjie Yang, Xueqing Qiu, Wenli Zhang. Applications of Lignin-Derived Porous Carbons for Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 285-300.
[6] Yuxaun Du, Tao Jiang, Meijia Chang, Haojie Rong, Huanhuan Gao, Yu Shang. Research Progress of Materials and Devices for Organic Photovoltaics Based on Non-Fused Ring Electron Acceptors [J]. Progress in Chemistry, 2022, 34(12): 2715-2728.
[7] Xiangkang Cao, Xiaoguang Sun, Guangyi Cai, Zehua Dong. Durable Superhydrophobic Surfaces: Theoretical Models, Preparation Strategies, and Evaluation Methods [J]. Progress in Chemistry, 2021, 33(9): 1525-1537.
[8] Zhen Zhang, Shuang Zhao, Guobing Chen, Kunfeng Li, Zhifang Fei, Zichun Yang. Preparation and Applications of Silicon Carbide Monolithic Aerogels [J]. Progress in Chemistry, 2021, 33(9): 1511-1524.
[9] Jinzhao Li, Zheng Li, Xupin Zhuang, Jixian Gong, Qiujin Li, Jianfei Zhang. Preparation of Cellulose Nanocrystallines and Their Applications in CompositeMaterials [J]. Progress in Chemistry, 2021, 33(8): 1293-1310.
[10] Lizhong Chen, Qiaobin Gong, Zhe Chen. Preparation and Application of Ultra-Thin Two Dimensional MOF Nanomaterials [J]. Progress in Chemistry, 2021, 33(8): 1280-1292.
[11] Xiaoxiao Xiang, Xiaowen Tian, Huie Liu, Shuang Chen, Yanan Zhu, Yuqin Bo. Controlled Preparation of Graphene-Based Aerogel Beads [J]. Progress in Chemistry, 2021, 33(7): 1092-1099.
[12] Ying Yang, Shupeng Ma, Yuan Luo, Feiyu Lin, Liu Zhu, Xueyi Guo. Multidimensional CsPbX3 Inorganic Perovskite Materials: Synthesis and Solar Cells Application [J]. Progress in Chemistry, 2021, 33(5): 779-801.
[13] Ying Yang, Yuan Luo, Shupeng Ma, Congtan Zhu, Liu Zhu, Xueyi Guo. Advances of Electron Transport Materials in Perovskite Solar Cells: Synthesis and Application [J]. Progress in Chemistry, 2021, 33(2): 281-302.
[14] Xiang Xu, Kun Li, Qingya Wei, Jun Yuan, Yingping Zou. Organic Solar Cells Based on Non-Fullerene Small Molecular Acceptor Y6 [J]. Progress in Chemistry, 2021, 33(2): 165-178.
[15] Ying Geng, Mohe Zhang, Jin Fu, Ruisha Zhou, Jiangfeng Song. MOF-74 and Its Compound: Diverse Synthesis and Broad Application [J]. Progress in Chemistry, 2021, 33(12): 2283-2307.