中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (8): 1110-1122 DOI: 10.7536/PC150161 Previous Articles   Next Articles

Special Issue: 锂离子电池

Tin-Metal-Carbon Composite Anode Materials for Lithium Ion Batteries

Meng Haowen, Ma Daqian, Yu Xiaohui, Yang Hongyan, Sun Yanli, Xu Xinhua*   

  1. School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 51273145).
PDF ( 2897 ) Cited
Export

EndNote

Ris

BibTeX

Graphite has been used as the negative electrode in lithium ion batteries for more than a decade. But it cant meet the needs of power battery application due to the low specific capacity. To attain higher energy density batteries, tin, which can alloy reversibly with lithium, has been considered as a replacement for graphite. However, tin anodes always suffer from high volume changes during charge/discharge cycling, leading to premature degradation of the anode. Since carbonaceous materials exhibit high electrical conductivity, good mechanical compliance, and stable lithium storage capacities with a small volume expansion, people have paid more attention to them. In order to make full use of the advantages of both tin and carbon, different matrix phases are evaluated for tin-carbon (Sn-C) nanocomposites in this paper. Several carbonaceous materials including amorphous carbon, graphite (G), graphene (GP), carbon nanotubes (CNT), and carbon nanofibers (CNF) have been exploited as an inert and conductive matrix in Sn-based anode materials, thus providing various tin-carbon composite anode materials. After reviewing that , the focus turns to alloys of tin with metal (M) and carbon,forming ternary and multiple composite anode materials. Based on the progress that has already been made on the relationship between the properties and microstructures of Sn-carbon-based anodes, it is believed that manipulating the multi-phase and multi-scale structures could offer important means for further improving the capacity and cyclability of Sn anodes. Overall, the Sn-Co-C-based composite anode materials may open the door to application.

Contents
1 Introduction
2 Sn-C binary composites
2.1 Sn-amorphous carbon
2.2 Sn-G
2.3 Sn-carbon nanomaterials
3 Sn-M-C
3.1 Sn-Co-C
3.2 Sn-Cu-C
3.3 Sn-Sb-C
4 Sn-Ms-C multiple composites
5 Conclusion

CLC Number: 

[1] Chang W S, Park C M, Sohn H J. J. Electroanal. Chem., 2012, 671: 67.
[2] Wen C J, Huggins R A. J. Electrochem. Soc., 1981, 128(6): 1181.
[3] Winter M, Besenhard J O, Spahr M E, Novák P. Adv. Mater., 1998, 10(10): 725.
[4] Besenhard J O, Yang J, Winter M. J. Power Sources, 1997, 68(1): 87.
[5] Courtney I A, Dahn J R. J. Electrochem. Soc., 1997, 144(9): 2943.
[6] Courtney I A, McKinnon W R, Dahn J R. J. Electrochem. Soc., 1999, 146(1): 59.
[7] Kamali A R, Fray D J. Rev. Adv. Mater. Sci., 2011, 27(1): 14.
[8] Wachtler M, Besenhard J O, Winter M. J. Power Sources, 2001, 94(2): 189.
[9] Liu S, Li Q, Chen Y, Zhang F. J. Alloys Compd., 2009, 478(1): 694.
[10] Cai Z, Xu L, Yan M, Han C, He L, Hercule K M, Niu C, Yuan Z, Xu W, Qu L, Zhao K, Mai L. Nano Lett., 2015, 15(1): 738.
[11] Bresser D, Mueller F, Buchholz D, Paillard E, Passerini S. Electrochim. Acta., 2014, 128: 163.
[12] Mouyane M, Ruiz J M, Artus M, Cassaignon S, Jolivet J P, Caillon G, Jordy C, Driesen K, Scoyer J, Stievano L, Olivier-Fourcade J, Jumas J C. J. Power Sources, 2011, 196(16): 6863.
[13] Wang J, Li D, Fan X, Gou L, Wang J, Li Y, Lu X, Li Q. J. Alloys Compd., 2012, 516: 33.
[14] Meschini I, Nobili F, Mancini M, Marassi R, Tossici R, Savoini A, Focarete M L, Croce F. J. Power Sources, 2013, 226: 241.
[15] Nobili F, Meschini I, Mancini M, Tossici R, Marassi R, Croce F. Electrochim. Acta., 2013, 107: 85.
[16] Chen J, Yang L, Fang S, Hirano S. Electrochem. Commun., 2011, 13(8): 848.
[17] Morishita T, Hirabayashi T, Okuni T, Ota N, Inagaki M. J. Power Sources, 2006, 160(1): 638.
[18] Xu Y, Liu Q, Zhu Y, Liu Y, Langrock A, Zachariah M R, Wang C. Nano Lett., 2013, 13(2): 470.
[19] Zhou X, Zou Y, Yang J. J. Solid State Chem., 2013, 198: 231.
[20] Li X, Dhanabalan A, Gu L, Wang C. Adv. Energy Mater., 2012, 2(2): 238.
[21] Lee Y, Kang Y M. J. Power Sources, 2011, 196(24): 10686.
[22] Fan X, Shao J, Xiao X, Wang X, Li S, Ge H, Chen L. Nano Energy, 2014, 9: 196.
[23] Wang G X, Ahn J H, Lindsay M J, Sun L, Bradhurst D H, Dou S X, Liu H K. J. Power Sources, 2001, 97: 211.
[24] Balan L, Schneider R, Willmann P, Billaud D. J. Power Sources, 2006, 161(1): 587.
[25] Lin Y S, Duh J G, Shieh D T, Yang M H. J. Alloys Compd., 2010, 490(1/2): 393.
[26] Morishita T, Hirabayashi T, Okuni T, Ota N, Inagaki M. J. Power Sources, 2006, 160(1): 638.
[27] Zheng X, Lv W, He Y B, Zhang C, Wei W, Tao Y, Li B, Yang Q H. J. Nanomater., 2014, 2014.
[28] Nabais C, Schneider R, Willmann P, Billaud D. Energy Convers. Manage., 2012, 56: 32.
[29] Wang Y, Li B, Zhang C, Tao H, Kang S, Jiang S, Li X. J. Power Sources, 2012, 219: 89.
[30] Grigoriants I, Sominski L, Li H, Ifargan I, Aurbach D, Gedanken A. Chem. Commun., 2005(7): 921.
[31] Nobili F, Tossici R, Croce F, Scrosati B, Marassi R. J. Power Sources, 2001, 94(2): 238.
[32] Nobili F, Mancini M, Dsoke S, Tossici R, Marassi R. J. Power Sources, 2010, 195(20): 7090.
[33] Nobili F, Mancini M, Stallworth P E, Croce F, Greenbaum S G, Marassi R. J. Power Sources, 2012, 198: 243.
[34] Chen S, Wang Y, Ahn H, Wang G. J. Power Sources, 2012, 216: 22.
[35] Zhou X, Zou Y, Yang J. J. Power Sources, 2014, 253: 287.
[36] Lian P, Wang J, Cai D, Liu G, Wang Y, Wang H. J. Alloys Compd., 2014, 604: 188.
[37] Wang D, Li X, Yang J, Wang J, Geng D, Li R, Cai M, Sham T K, Sun X. Phys. Chem. Chem. Phys., 2013, 15(10): 3535.
[38] Beck F R, Epur R, Hong D, Manivannan A, Kumta P N. Electrochim. Acta, 2014, 127: 299.
[39] Liang S, Zhu X, Lian P, Yang W, Wang H. J. Solid State Chem., 2011, 184(6): 1400.
[40] Yue W, Yang S, Liu Y, Yang X. Mater. Res. Bull., 2013, 48(4): 1575.
[41] Zhu J, Wang D, Cao L, Liu T. J. Mater. Chem. A, 2014, 2(32): 12918.
[42] Luo B, Wang B, Li X, Jia Y, Liang M, Zhi L. Adv. Mater., 2012, 24(26): 3538.
[43] Ji L, Tan Z, Kuykendall T, An E J, Fu Y, Battaglia V, Zhang Y. Energy Environ. Sci., 2011, 4(9): 3611.
[44] Li Z, Lv W, Zhang C, Qin J, Wei W, Shao J, Wang D, Li B, Kang F, Yang Q. Nanoscale, 2014, 6(16): 9554.
[45] Wang C, Ju J, Yang Y, Tang Y, Bi H, Liao F, Lin J, Shi Z, Huang F, Han R P S. RSC Adv., 2013, 3(44): 21588.
[46] Li N, Song H, Cui H, Wang C. Nano Energy, 2014, 3: 102.
[47] Wang C, Li Y, Chui Y S, Wu Q H, Chen X, Zhang W. Nanoscale, 2013, 5(21): 10599.
[48] Wen Z, Cui S, Kim H, Mao S, Yu K, Lu G, Pu H, Mao O, Chen J. J. Mater. Chem., 2012, 22(8): 3300.
[49] Luo B, Wang B, Liang M, Ning J, Li X, Zhi L. Adv. Mater., 2012, 24(11): 1405.
[50] Zheng J W, Nai S M L, Ng M F, Wu P, Wei J, Gupta M. J. Phys. Chem. C, 2009, 113(31): 14015.
[51] Zhao B, Yadian B L, Li Z J, Liu P, Zhang Y F. Surf. Eng., 2009, 25(1): 31.
[52] Alaf M, Akbulut H. J. Power Sources, 2014, 247: 692.
[53] Menkin S, Barkay Z, Golodnitsky D, Peled E. J. Power Sources, 2014, 245: 345.
[54] Seo S D, Lee G H, Lim A H, Min K M, Kim J C, Shim H W, Park K S, Kim D W. RSC Adv., 2012, 2(8): 3315.
[55] Wu M, Wang C, Chen J, Wang F, Yi B. Ionics, 2013, 19(10): 1341.
[56] Liu W L, Hsieh S H, Chen W J. Appl. Surf. Sci., 2007, 253(20): 8356.
[57] Huang X, Chen J, Yu H, Peng S, Cai R, Yan Q, Hng H H. RSC Adv., 2013, 3(16): 5310.
[58] Wang Y, Wu M, Jiao Z, Lee J Y. Chem. Mater., 2009, 21(14): 3210.
[59] Jankovi L, Gournis D, Trikalitis P N, Arfaoui I, Cren T, Rudolf P, Sage M H, Palstra T T M, Kooi B, De Hosson J, Karakassides M A, Dimos K, Moukarika A, Bakas T. Nano Lett., 2006, 6(6): 1131.
[60] Li R, Sun X, Zhou X, Cai M, Sun X. J. Phys. Chem. C, 2007, 111(26): 9130.
[61] Zheng Y, Xie J, Song W, Liu S, Cao G, Zhao X. J. Mater. Res., 2011, 26(21): 2719.
[62] Lan C, Gong J, Jiang Y, Deng Y, Yang S. Physica E, 2012, 44(10): 2128.
[63] Li N, Song H, Cui H, Yang G, Wang C. J. Mater. Chem. A, 2014, 2(8): 2526.
[64] Zou Y, Wang Y. ACS Nano, 2011, 5(10): 8108.
[65] Li S, Chen C, Fu K, Xue L, Zhao C, Zhang S, Hu Y, Zhou L, Zhang X. Solid State Ionics, 2014, 254: 17.
[66] Shafiei M, Alpas A T. J. Power Sources, 2011, 196(18): 7771.
[67] Zou L, Gan L, Lv R, Wang M, Huang Z H, Kang F, Shen W. Carbon, 2011, 49(1): 89.
[68] Lee B S, Son S B, Park K M, Yu W R, Oh K H, Lee S H. J. Power Sources, 2012, 199: 53.
[69] Yu Y, Gu L, Wang C, Dhanabalan A, van Aken P A, Maier J. Angew. Chem. Int. Ed., 2009, 48(35): 6485.
[70] Yu Y, Yang Q, Teng D, Yang X, Ryu S. Electrochem. Chmmun., 2010, 12(9): 1187.
[71] Zou L, Gan L, Kang F, Wang M, Shen W, Huang Z. J. Power Sources, 2010, 195(4): 1216.
[72] Wang H, Gao P, Lu S, Liu H, Yang G, Pinto J, Jiang X. Electrochim. Acta, 2011, 58: 44.
[73] Xia X, Wang X, Zhou H, Niu X, Xue L, Zhang X, Wei Q. Electrochim. Acta, 2014, 121: 345.
[74] Sun Z, Zussman E, Yarin A L, Wendorff J H, Greiner A. Adv. Mater., 2003, 15(22): 1929.
[75] Zussman E, Yarin A L, Bazilevsky A V, Avrahami R, Feldman M. Adv. Mater., 2006, 18(3): 348.
[76] Park C M, Kim J H, Kim H, Sohn H J. Chem. Soc. Rev., 2010, 39(8): 3115.
[77] Huang T, Yao Y, Wei Z, Liu Z, Yu A. Electrochim. Acta, 2010, 56(1): 476.
[78] Tarascon J M, Armand M. Nature., 2001, 414(6861): 359.
[79] Julien C M. Mater. Sci. Eng., R., 2003, 40(2): 47.
[80] Todd A D W, Ferguson P P, Fleischauer M D, Dahn J R. Int. J. Energ Res., 2010, 34(6): 535.
[81] Ferguson P P, Todd A D W, Dahn J R. Electrochem. Chmmun., 2008, 10(1): 25.
[82] Ferguson P P, Todd A D W, Martine M L, Dahn J R. J. Electrochem. Soc., 2013, 161(3): A342.
[83] Todd A D W, Ferguson P P, Barker J G, Fleischauer M D, Dahn J R. J. Electrochem. Soc., 2009, 156(12): A1034.
[84] Ferguson P P, Martine M L, Dunlap R A, Dahn J R. Electrochim. Acta, 2009, 54(19): 4534.
[85] Ferguson P P, Rajora M, Dunlap R A, Dahn J R. J. Electrochem. Soc., 2009, 156(3): A204.
[86] Zhou F, Zhao X, Ferguso Dń P P, Thorne J S, Dunlap R A, Dahn J R. J. Electrochem. Soc., 2008, 155(12): A921.
[87] Thorne J S, Ferguson P P, Dunlap R A, Dahn J R. J. Alloys Compd., 2009, 472(1/2): 390.
[88] Cui W, Wang F, Wang J, Wang C, Xia Y. Electrochim. Acta, 2011, 56(13): 4812.
[89] Li M Y, Liu C L, Shi M R, Dong W S. Electrochim. Acta., 2011, 56(8): 3023.
[90] Chen Z, Qian J, Ai X, Cao Y, Yang H. J. Power Sources, 2009, 189(1): 730.
[91] Gu Y, Wu F, Wang Y. Adv. Funct. Mater., 2013, 23(7): 893.
[92] Wang Y, Lee J Y. Angew. Chem. Int. Ed., 2006, 45(42): 7039.
[93] Huang L, Cai J S, He Y, Ke F S, Sun S G. Electrochem. Chmmun., 2009, 11(5): 950.
[94] Lu W, Luo C, Li Y, Feng Y, Feng W, Zhao Y, Yuan X. J. Nanopart. Res., 2013, 15(9): 1.
[95] Cui W J, Li F, Liu H J, Wang C X, Xia Y Y. J. Mater. Chem., 2009, 19(39): 7202.
[96] Chen J, Yang L, Fang S, Zhang Z, Hirano S I. Electrochim. Acta., 2013, 105: 629.
[97] Lei W X, Pan Y, Zhou Y C, Zhou W, Peng M L, Ma Z S. RSC Adv., 2013, 4(7): 3233.
[98] Thorne J S, Dahn J R, Obrovac M N, Dunlap R A. J. Power Sources, 2012, 216: 139.
[99] Thorne J S, Dahn J R, Obrovac M N, Dunlap R A. J. Electrochem. Soc., 2011, 158(12): A1328.
[100] Ferguson P P, Dunlap R A, Dahn J R. J. Electrochem. Soc., 2010, 157(3): A326.
[101] Thorne J S, Sanderson R J, Dahn J R, Dunlap R A. J. Electrochem. Soc., 2010, 157(10): A1085.
[102] Thorne J S, Dahn J R, Obrovac M N, Dunlap R A. J. Alloys Compd., 2011, 509(23): 6705.
[103] Li J, Ru Q, Hu S, Sun D, Zhang B, Hou X. Electrochim. Acta., 2013, 113: 505.
[104] Hassoun J, Derien G, Panero S, Scrosati B. Electrochim. Acta, 2009, 54(19): 4441.
[105] Park M S, Needham S A, Wang G X, Kang Y M, Park J S, Dou S X, Liu H K. Chem. Mater., 2007, 19(10): 2406.
[106] Park C M, Sohn H J. Electrochim. Acta., 2009, 54(26): 6367.
[107] 褚道葆(Chu D B), 李建(Li J), 袁希梅(Yuan X M), 李自龙(Li Z L), 魏旭(Wei X), 万勇(Wan Y). 化学进展(Progress in Chemistry), 2012, 24(08): 1466.
[108] Wachtler M, Winter M, Besenhard J O. J. Power Sources, 2002, 105(2): 151.
[109] Park C M, Jeon K J. Chem. Commun., 2011, 47(7): 2122.
[110] Chen S, Chen P, Wu M, Pan D, Wang Y., Electrochem. Chmmun., 2010, 12(10): 1302.
[111] Hu R, Liu H, Zeng M, Wang H, Zhu M. J. Mater. Chem., 2011, 21(12): 4629.
[112] Edfouf Z, Fariaut-Georges C, Cuevas F, Latroche M, Hézèque T, Caillon G, Jordy C, Sougrati M T, Jumas J C. Electrochim. Acta, 2013, 89: 365.
[113] Li J, Wu P, Tang Y, Xu X, Zhou Y, Chen Y, Lu T. CrystEngComm, 2013, 15(47): 10340.
[114] Wang X, Wen Z, Lin B, Lin J, Wu X, Xu X. J. Power Sources, 2008, 184(2): 508.
[115] Yang H, Li L. J. Alloys Compd., 2014, 584: 76.
[116] Zhang R, Fang G, Liu W, Xia B, Sun H, Zheng J, Li D. Appl. Surf. Sci., 2014, 292: 682.
[117] Fan L, Zhu Y, Zhang J, Liang J, Wang L, Wei D, Li X, Qian Y. Electrochim. Acta., 2014, 121: 21.
[118] 胡仁宗(Hu R Z), 杨黎春(Yang L C), 朱敏(Zhu M). 科学通报(Chinese Science Bulletin), 2013, 58(31): 3140.
[119] Ferguson P P, Martine M L, George A E, Dahn J R. J. Power Sources, 2009, 194(2): 794.
[120] Ferguson P P, Liao P, Dunlap R A, Dahn J R. J. Electrochem. Soc., 2009, 156(1): A13.
[121] Liang Z, Yang S. J. Mater. Sci. Technol., 2010, 26(7): 653.
[122] Yoon S, Manthiram A. J. Mater. Chem., 2009, 20(2): 236.
[123] Yoon S, Manthiram A. Electrochim. Acta., 2011, 56(8): 3029.
[124] Applestone D, Manthiram A. RSC Adv., 2012, 2(12): 5411.
[125] Edfouf Z, Cuevas F, Latroche M, Georges C, Jordy C, Hézèque T, Caillon G, Jumas J C, Sougrati M T. J. Power Sources, 2011, 196(10): 4762.
[126] Edfouf Z, Sougrati M T, Fariaut-Georges C, Cuevas F, Jumas J C, Hézèque T, Jordy C, Caillon G, Latroche M. J. Power Sources, 2013, 238: 210.
[127] Zhong Y, Zhang Y, Cai M, Balogh M P, Li R, Sun X. Appl. Surf. Sci., 2013, 270: 722.
[128] Li X, Zhong Y, Cai M, Balogh M P, Wang D, Zhang Y, Li R, Sun X. Electrochim. Acta, 2013, 89: 387.
[1] Mengrui Yang, Yuxin Xie, Dunru Zhu. Synthetic Strategies of Chemically Stable Metal-Organic Frameworks [J]. Progress in Chemistry, 2023, 35(5): 683-698.
[2] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[3] Yu Xiaoyan, Li Meng, Wei Lei, Qiu Jingyi, Cao Gaoping, Wen Yuehua. Application of Polyacrylonitrile in the Electrolytes of Lithium Metal Battery [J]. Progress in Chemistry, 2023, 35(3): 390-406.
[4] Xiaozhu Zhao, Wen Li, Xuerui Zhao, Naipu He, Chao Li, Xuehui Zhang. Controlled Growth of MOFs in Emulsion [J]. Progress in Chemistry, 2023, 35(1): 157-167.
[5] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[6] Qi Qi, Peizhu Xu, Zhidong Tian, Wei Sun, Yangjie Liu, Xiang Hu. Recent Advances of the Electrode Materials for Sodium-Ion Capacitors [J]. Progress in Chemistry, 2022, 34(9): 2051-2062.
[7] Yiling Tan, Shichun Li, Xi Yang, Bo Jin, Jie Sun. Strategies of Improving Anti-Humidity Performance for Metal Oxide Semiconductors Gas-Sensitive Materials [J]. Progress in Chemistry, 2022, 34(8): 1784-1795.
[8] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[9] Haidi Feng, Lu Zhao, Yunfeng Bai, Feng Feng. The Application of Nanoscale Metal-Organic Frameworks for Tumor Targeted Therapy [J]. Progress in Chemistry, 2022, 34(8): 1863-1878.
[10] Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao. Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2022, 34(6): 1337-1347.
[11] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[12] Changle Yue, Wenjing Bao, Jilei Liang, Yunqi Liu, Daofeng Sun, Yukun Lu. Application of POMs-Based Sulfided Catalyst in Hydrodesulfurization and Hydrogen Evolution by Electrolysis of Water [J]. Progress in Chemistry, 2022, 34(5): 1061-1075.
[13] Yanan Han, Jiahui Hong, Anrui Zhang, Ruoxuan Guo, Kexin Lin, Yuejie Ai. A Review on MXene and Its Applications in Environmental Remediation [J]. Progress in Chemistry, 2022, 34(5): 1229-1244.
[14] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[15] Jinhui Zhang, Jinhua Zhang, Jiwei Liang, Kaili Gu, Wenjing Yao, Jinxiang Li. Progress in Zerovalent Iron Technology for Water Treatment of Metal(loid) (oxyan) Ions: A Golden Decade from 2011 to 2021 [J]. Progress in Chemistry, 2022, 34(5): 1218-1228.