中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (9): 1213-1229 DOI: 10.7536/PC150156 Previous Articles   Next Articles

• Review and comments •

Reactive Rhodamine Fluorescent Probes

Fu Yang1, Yan Fanyong1*, Zheng Tancheng1, Mu Xueling1, Sun Fengzhan1, Chen Li2*   

  1. 1. State Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, China;
    2. Tianjin Key Laboratory of Fiber Modification and Functional Fiber, School of Material Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21174103, 21374078, 51303132), the National Training Program of Innovation and Entrepreneurship for Undergraduates(No. 201310058017), and the Tianjin Research Program of Application Foundation and Advanced Technology (No. 15JCYBJC18100).
PDF ( 2190 ) Cited
Export

EndNote

Ris

BibTeX

Compared with the traditional fluorescent probes based on non-covalent bond supermolecular interactions, the identification process of reaction fluorescent probes is a chemical reaction with the target compound to change the spectral properties or color, thus different structures of the photoactive compounds are generated. In recent years, reactive fluorescent probes are mainly three types of chemical reactions, including the substrate and the receptor are connected through covalent bond; substrate as a catalyst occurs irreversible reactions with the receptor; the substrate coordinates with the receptor based on replacement reacting. Because of the advantages of using the selection of a particular substance reaction, reactive fluorescent probes provide a convenient, quick, specific method to detect target, with high sensitivity and selectivity. In the review, the latest research progress of reaction-based rhodamine fluorescent probes to detect the metal cations, reactive oxygen species and anions to induce β-lactam ring-opening in the past six years is reviewed, and the relationship between the structure and the detection performance of the probes is introduced. In addition, the application prospect and development trend of fluorescent probes are prospected.

Contents
1 Intorduction
2 Reaction-based fluorescent probes for cations
2.1 Reaction-based fluorescent probes for Cu2+
2.2 Reaction-based fluorescent probes for Hg2+
2.3 Reaction-based fluorescent probes for Fe3+
2.4 Reaction-based fluorescent probes for Pd2+
2.5 Reaction-based fluorescent probes for Ag+ and Au3+
3 Reaction-based fluorescent probes for reactive oxygen species(ROS)
3.1 Reaction-based fluorescent probes for ClO-
3.2 Reaction-based fluorescent probes for HO·
3.3 Reaction-based fluorescent probes for H2O2
4 Reaction-based fluorescent probes for anions
5 Conclusion

CLC Number: 

[1] Park S, Kim W, Swamy K M K, Lee H Y, Jung J Y, Kim G, Kim Y, Kim S J, Yoon J. Dyes Pigments, 2013, 99: 323.
[2] Sun T, Moon J O, Choi M G, Cho Y, Ham S W, Chang S K. Sensor and Actuat B, 2013, 182: 755.
[3] Wei L, Yi L, Song F, Wei C, Wang B F, Xi Z. Sci. Rep., 2014, 4 : 4521.
[4] Adhikari S, Ghosh A, Mandal S, Sengupta A, Chattopadhyay A, Matalobos J S, Lohar S, Das D. Dalton Trans., 2014, 43: 7747.
[5] 冷冰(Leng B), 田禾(Tian H). 化学进展(Progress in Chemistry), 2010, 22(5): 837.
[6] Wang M, Yan F Y, Zou Y, Chen L, Yang N, Zhou X G. Sensor and Actuat B, 2014, 192: 512.
[7] Yan F Y, Wang M, Cao D L, Yang N, Fu Y, Chen L, Chen L G. Dyes Pigments, 2013, 98: 42.
[8] Yan F Y, Cao D L, Yang N, Yu Q H, Wang M, Chen L. Sensor and Actuat B, 2012, 162: 313.
[9] Zhang D, Li M, Wang M, Wang J H, Yan X, Ye Y, Zhao Y F. Sensor and Actuat B, 2013, 177: 997.
[10] Lavis L D, Raines R T. ACS Chem. Biol., 2008, 3: 142.
[11] 孙伟 (Sun W), 胡德禹 (Hu D Y), 吴志兵 (Wu Z B), 宋宝安 (Song B A), 杨松 (Yang S). 有机化学(Chinese Journal of Organic Chemistry), 2011, 31(7): 997.
[12] Jun M E, Roy B, Ahn K H. Chem. Commun., 2011, 47: 7583.
[13] 刘云龙(Liu Y L). 山西大学博士论文(Doctoral Dissertation of Shanxi University), 2012.
[14] Kim H N, Lee M H, Kim H J, Kim J S, Yoon J. Chem. Soc. Rev., 2008, 37: 1465.
[15] Duong T Q, Kim J S. Chem. Rev., 2010, 110: 6280.
[16] Barceloux D G. J. Toxicol. Clin. Toxicol., 1999, 37: 217.
[17] Georgopoulos P G, Roy A, Yonone-Lioy M J, Opiekun R E, Lioy P J. J. Toxicol. Environ. Health Part B., 2001, 4: 341.
[18] 袁跃华(Yuan Y H), 田茂忠(Tian M Z), 冯锋(Feng F), 孟双明(Meng S M), 白云峰(Bai Y F). 化学进展(Progress in Chemistry), 2010, 22(10): 1929.
[19] Dujols V, Ford F, Czarnik A W. J. Am. Chem. Soc., 1997, 119: 7386.
[20] Chen X Q, Jia J, Ma H M, Wang S J, Wang X C. Anal. Chim. Acta, 2009, 632: 9.
[21] Hua Z Q, Wang X M, Feng Y C, Ding L, Lu H Y. Dyes and Pigments, 2011, 88: 257.
[22] Kumar M, Kumar N, Bhalla V, Sharma P R, Kaur T. Org. Lett., 2011, 14: 406.
[23] Tang L J, Guo J J, Cao Y H, Zhao N. J. Fluoresc., 2012, 22: 1603.
[24] Wang J L, Li H, Long L P, Xiao G Q, Xie D. J. Lumin., 2012, 132: 2456.
[25] Xiang Y, Tong A J. J. Lumin., 2008, 23: 28.
[26] Yu M X, Shi M, Chen Z G, Li F Y, Li X X, Gao Y H, Xu J, Yang H, Zhou Z G, Yi T, Huang C H. Chem. Eur. J., 2008, 14: 6892.
[27] Huang L, Hou F P, Xi P X, Bai D C, Xu M, Li Z P, Xie G Q, Shi Y J, Liu H Y, Zeng Z Z. J. Inorg. Biochem., 2011, 105: 800.
[28] Ilobet J M, Falco G, Teixido A, Domingo J L. J. Agric. Food Chem., 2003, 51: 838.
[29] Harris H H, Pickering I J, George G N. Science, 2003, 301: 1203.
[30] Pandurangappa M, Kumar K S. Anal. Methods, 2011, 3: 715.
[31] Yang Y K, Ko S K, Shin I, Tae J. Org. Bio. Chem., 2009, 7: 4590.
[32] Liu W M, Xu L W, Zhang H Y, You J J, Zhang X L, Sheng R L, Li H P, Wu S K, Wang P F. Org. Bio. Chem., 2009, 7: 660.
[33] Wu J S, Hwang I C, Kim K S, Kim J S. Org. Lett., 2007, 9(5): 907.
[34] Zhang J F, Lim C S, Cho B R, Kim J S. Talanta, 2010, 83: 658.
[35] Xi P X, Huang L, Liu H, Jia P F, Chen F J, Xu M, Zeng Z Z. J. Biol. Inorg. Chem., 2009, 14: 815.
[36] Gong Y J, Zhang X B, Chen Z, Yuan Y, Jin Z, Mei L, Zhang J, Tan W H, Shen G L, Yu R Q. Analyst, 2012, 137: 932.
[37] Zhang D, Li M, Wang M, Wang J H, Yang X, Ye Y, Zhao Y F. Sensor and Actuat B, 2013, 177: 977.
[38] Hu Z Q, Zhuang W M, Li M, Liu M D, Wen L R, Li C X. Dyes and Pigments, 2013, 98: 286.
[39] Nishizawa M, Imagawa H, Yamamoto H. Org. Biomol. Chem., 2010, 8: 511.
[40] Lin W Y, Cao X W, Ding Y D, Yuan L, Long L L. Chem. Commun, 2010, 46: 3529.
[41] Zhu M, Yuan M, Liu X, Xu J, Lv J, Huang C. Org. Lett., 2008, 10: 1481.
[42] Coskun A, Yilmaz M D, Akkaya E U. Org. Lett., 2007, 9: 607.
[43] Avirah R R, Jyothish K, Ramaiah D. Org. Lett., 2007, 9: 121.
[44] Zhang X, Shiraishi Y, Hirai T. Org. Lett., 2007, 9: 5039.
[45] Wang L N, Yan J X, Qin W W, Liu W S, Wang R. Dyes and Pigments, 2012, 92: 1083.
[46] Du J J, Fan J L, Peng X J, Sun P P, Wang J Y, Li H L, Sun S G. Org. Lett., 2010, 12(3): 476.
[47] Shi W, Sun S N, Li X H, Ma H M. Inorg. Chem., 2010, 49: 1206.
[48] Autreáux B, Tucker N P, Dixon R, Spiro S A. Nature, 2005, 437: 769.
[49] Swaminathan S, Fonseca V A, Alam M G, Shah S V. Diabetes Care, 2007, 30: 1926.
[50] Galaris D, Skiada V, Barbouti A. Cancer Lett., 2008, 266: 21.
[51] Lee M H, Giap T V, Kim S H, Lee Y H, Kang C, Kim J S. Chem. Commun., 2010, 46: 1407.
[52] Chen X P, Hong H J, Han R, Zhang D, Ye Y, Zhao Y F. J. Fluoresc., 2012, 22: 789.
[53] Cho D G, Sessler J L. Chem. Soc. Rev., 2009, 38: 1647.
[54] Carey J S, Laffan D, Thomson C, Williams M T. Org. Biomol. Chem., 2006, 4: 2337.
[55] International Programme on Chemical Safety. Environmental Health Criteria Series 226-Palladium.2nd ed. Geneva: World Health Organization, 2002.
[56] Jun M E, Ahn K H. Org. Lett., 2010, 12: 2790.
[57] Asharani P V, Wu Y L, Gong Z, Valiyaveettil S. Nanotechnology, 2008, 19: 1.
[58] Chatterjee A, Santra M, Won N, Kim S J, Kim J K, Kim S B, Ahn K H. J. Am. Chem. Soc., 2009, 131: 2040.
[59] Danscher G. Histochem. Cell Biol., 2002, 117: 447.
[60] Goodman C M, McCusker C D, Yilmaz T, Rotello V M. Bioconjug. Chem., 2004, 15: 897.
[61] Habib A, Tabata M. J. Inorg. Biochem., 2004, 98: 1696.
[62] Nyarko E, Hara T, Grab D J, Habib A, Kim Y, Nikolskaia O, Fukuma T, Tabata M. Chem. Biol. Interact., 2004, 148: 19.
[63] Jou M J, Chen X Q, Swamy K M K, Kim H N, Kim H J, Lee S G, Yoon J Y. Chem. Commun, 2009, 7218.
[64] Yang Y K, Lee S H, Tae J S. Org. Lett., 2009, 11: 5610.
[65] Egorova O A, Seo H, Chatterjee A, Ahn K H. Org. Lett., 2010, 12: 401.
[66] Yuan L, Lin W Y, Yang Y T, Song J Z. Chem. Comm., 2011, 47: 4703.
[67] D'Autréaux B, Toledano M B. Nat. Rev. Mol. Cell. Biol., 2007, 8: 813.
[68] Oushiki D, Kojima H, Terai T, Arita M, Hanaoka K, Urano Y, Nagano T. J. Am. Chem. Soc., 2010, 132: 2795.
[69] Yap Y W, Whiteman M, Cheung N S. Cell Signal, 2007, 19: 219.
[70] Pattison D I, Davies M. J. Biochemistry, 2006, 45: 8152.
[71] Sugiyama S, Kugiyama K, Aikawa M, Nakamura S, Ogawa H, Libby P. Vasc. Biol., 2004, 24: 1309.
[72] Podrez E A, AbuSoud H M, Hazen S L. Free Radical Biol. Med., 2000, 28: 1717.
[73] Sun Z N, Liu F Q, Chen Y, Tam P K H, Yang D. Org. Lett., 2008, 10: 2171.
[74] Yang Y K, Cho H J, Lee J, Shin I, Tae J. Org. Lett., 2009, 11: 859.
[75] Zhan X Q, Yan J H, Su J H, Wang Y C, He J, Wang S Y, Zheng H, Xu J G. Sensor and Actuat B, 2010, 150: 774.
[76] Zhang Z, Zheng Y, Hang W, Yan X M, Zhao Y F. Talanta, 2011, 85: 779.
[77] Wei F F, Lu Y, He S, Zhao L C, Zeng X S. Anal. Methods, 2012, 4: 616.
[78] Zhang Y R, Chen X P, Shao J, Zhang J Y, Yuan Q, Miao J Y, Zhao B X. Chem. Commun, 2014, 50: 14241.
[79] Halliwell B, Gutteridge J M C. Free Radicals in Biology and Medicine. 2nd ed. NY: Oxford University Press, 1989.
[80] Yapici N B, Jockusch S, Moscatelli A, Mandalapu S R, Itagaki Y, Bates D K, Wiseman S, Gibson K M, Turro N J, Bi L. Org. Lett., 2012, 14: 50.
[81] Kim M, Ko S K, Kim H, Shin I, Tae J. Chem. Commun., 2013, 49: 7959.
[82] Paulsen C E, Carroll K S. ACS Chem. Biol., 2010, 5: 47.
[83] Galaris D, Skiada V, Barbouti A. Cancer Lett., 2008, 266: 21.
[84] Yuan L, Lin W Y, Xie Y N, Chen B, Zhu S S. J. Am. Chem. Soc., 2012, 134: 1305.
[85] Ratner A J, Prince A. Am. J. Respir. Cell Mol. Biol., 2006, 22: 642.
[86] McFeeters R F. J. Food Protect., 1998, 61: 885.
[87] Fazio T, Warner C R. Food Addit. Contam., 1990, 7: 433.
[88] Yang X F, Zhao M L, Wang G. Sensor and Actuat B, 2010, 152: 8.
[89] Banerjee A, Sahana A, Lohar S, Hauli I, Mukhopadhyay S K, Safin D A, Babashkina M G, Bolte M, Garcia Y, Das D. Chem. Commun., 2013, 49: 2527.
[1] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[2] Yan Bao, Jiachen Xu, Ruyue Guo, Jianzhong Ma. High-Sensitivity Flexible Pressure Sensor Based on Micro-Nano Structure [J]. Progress in Chemistry, 2023, 35(5): 709-720.
[3] Yixue Xu, Shishi Li, Xiaoshuang Ma, Xiaojin Liu, Jianjun Ding, Yuqiao Wang. Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts [J]. Progress in Chemistry, 2023, 35(4): 509-518.
[4] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[5] Zhendong Liu, Jiajie Pan, Quanbing Liu. Application of Machine Learning in the Design of Cathode Materials and Electrolytes for High-Performance Lithium Batteries [J]. Progress in Chemistry, 2023, 35(4): 577-592.
[6] Dong Baokun, Zhang Ting, He Fan. Research Progress and Application of Flexible Thermoelectric Materials [J]. Progress in Chemistry, 2023, 35(3): 433-444.
[7] Yang Guodong, Yuan Gaoqian, Zhang Jingzhe, Wu Jinbo, Li Faliang, Zhang Haijun. Porous Electromagnetic Wave Absorbing Materials [J]. Progress in Chemistry, 2023, 35(3): 445-457.
[8] Jiang Haoyang, Xiong Feng, Qin Mulin, Gao Song, He Liuruyi, Zou Ruqiang. Conductive Phase Change Materials (PCMs) for Electro-to-Thermal Energy Conversion, Storage and Utilization [J]. Progress in Chemistry, 2023, 35(3): 360-374.
[9] Niu Wenhui, Zhang Da, Zhao Zhengang, Yang Bin, Liang Feng. Development of Na-Based Seawater Batteries: “Key Components and Challenges” [J]. Progress in Chemistry, 2023, 35(3): 407-420.
[10] Feng Li, Qingyun He, Fang Li, Xiaolong Tang, Changlin Yu. Materials for Hydrogen Peroxide Production via Photocatalysis [J]. Progress in Chemistry, 2023, 35(2): 330-349.
[11] Xiaojun Liu, Lang Qin, Yanlei Yu. Light-Driven Handedness Inversion of Cholesteric Liquid Crystals [J]. Progress in Chemistry, 2023, 35(2): 247-262.
[12] Xuan Li, Jiongpeng Huang, Yifan Zhang, Lei Shi. 1D Nanoribbons of 2D Materials [J]. Progress in Chemistry, 2023, 35(1): 88-104.
[13] Chao Ji, Tuo Li, Xiaofeng Zou, Lu Zhang, Chunjun Liang. Two-Dimensional Perovskite Photovoltaic Devices [J]. Progress in Chemistry, 2022, 34(9): 2063-2080.
[14] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[15] Yanqin Lai, Zhenda Xie, Manlin Fu, Xuan Chen, Qi Zhou, Jin-Feng Hu. Construction and Application of 1,8-Naphthalimide-Based Multi-Analyte Fluorescent Probes [J]. Progress in Chemistry, 2022, 34(9): 2024-2034.
Viewed
Full text


Abstract

Reactive Rhodamine Fluorescent Probes