中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (9): 1275-1290 DOI: 10.7536/PC150155 Previous Articles   Next Articles

Special Issue: 锂离子电池

• Review and comments •

Silicon-Based Anode Materials for Lithium-Ion Batteries

Niu Jin, Zhang Su, Niu Yue, Song Huaihe*, Chen Xiaohong, Zhou Jisheng   

  1. State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.51272019, 51272016) and the Foundation of Excellent Doctoral Dissertation of Beijing City (No.YB20121001001).
PDF ( 91213 ) Cited
Export

EndNote

Ris

BibTeX

Silicon has the highest theoretical capacity(4200 mAh ·g-1) when used as the anode material for lithium-ion batteries. But the severe volume change(> 300%) during Li+insertion/extraction processes results in the structural destruction, which further leads to the loss of electrical contact between active materials themselves or active materials and the current collectors. Moreover, the new solid electrolyte interphase (SEI) continually forms on the surface of silicon. All of these problems cause capacity attenuation as well as the poor cycling and rate performance for silicon-based anode materials. In this review, the lithium-storage and capacity fading mechanisms of silicon-based materials for lithium-ion batteries are summarized. To overcome the severe volume change during charge/discharge, selection and structure design of silicon material are introduced. Synthetic routes, electrochemical performance and possible mechanisms of typical silicon-based composite materials, especially various silicon/carbon composite materials, are discussed. An overview of several novel fabrication techniques of the electrodes for improving the electrochemical performance of silicon-based anode materials and their possible mechanisms are given. Challenges and perspectives of silicon-based anode materials are also proposed and discussed.

Contents
1 Introduction
2 Lithium-storage and capacity fading mechanisms
3 Selection and structure design of silicon material
3.1 Amorphous silicon and silicon oxide
3.2 Low-dimensional silicon materials
3.3 Porous and hollow silicon materials
4 Fabrication of silicon-based composites
4.1 Silicon/metal composites
4.2 Silicon/carbon composites
4.3 Other silicon-based materials
5 Optimizing the preparation process of electrodes
5.1 Treatments of electrodes
5.2 Selection of current collectors
5.3 Choices of binders
5.4 Options of electrolyte
6 Conclusion and outlook

CLC Number: 

[1] Armand M, Tarascon J M. Nature, 2008, 451: 652.
[2] Kasavajjula U, Wang C, Appleby A J. J. Power Sources, 2007, 163: 1003.
[3] 陈敬波(Chen J B), 赵海雷(Zhao H L), 何见超(He J C), 王梦微(Wang M W). 化学进展(Progress in Chemistry), 2009, 21: 2115.
[4] 高鹏飞(Gao P F), 杨军(Yang J). 化学进展(Progress in Chemistry), 2011, 23: 264.
[5] 陶占良(Tao Z L), 王洪波(Wang H B), 陈军(Chen J). 化学进展(Progress in Chemistry), 2011, 23: 318.
[6] Chan C K, Peng H, Liu G, Mcilwrath K, Zhang X F, Huggins R A, Cui Y. Nat. Nanotechnol., 2007, 3: 31.
[7] Yin Y, Wan L, Guo Y. Chin. Sci. Bull., 2012, 57: 4104.
[8] Yang J, Winter M, Besenhard J. Solid State Ionics, 1996, 90: 281.
[9] Besenhard J, Yang J, Winter M. J. Power Sources, 1997, 68: 87.
[10] Zhang W J. J. Power Sources, 2011, 196: 13.
[11] Dey A. J. Electrochem. Soc., 1971, 118: 1547.
[12] Boukamp B, Lesh G, Huggins R. J. Electrochem. Soc., 1981, 128: 725.
[13] Sharma R A, Seefurth R N. J. Electrochem. Soc., 1976, 123: 1763.
[14] Limthongkul P, Jang Y I, Dudney N J, Chiang Y M. Acta Mater., 2003, 51: 1103.
[15] Obrovac M, Christensen L. Electrochem. Solid State Lett., 2004, 7: A93.
[16] Hatchard T, Dahn J. J. Electrochem. Soc., 2004, 151: A838.
[17] Li J, Dahn J. J. Electrochem. Soc., 2007, 154: A156.
[18] Obrovac M, Krause L. J. Electrochem. Soc., 2007, 154: A103.
[19] Winter M, Besenhard J O, Spahr M E, Novak P. Adv. Mater., 1998, 10: 725.
[20] Lee S J, Lee J K, Chung S H, Lee H Y, Lee S M, Baik H K. J. Power Sources, 2001, 97: 191.
[21] Ryu J H, Kim J W, Sung Y E, Oh S M. Electrochem. Solid State Lett., 2004, 7: A306.
[22] Kang Y M, Go J Y, Lee S M, Choi W U. Electrochem. Commun., 2007, 9: 1276.
[23] Sethuraman V A, Chon M J, Shimshak M, Srinivasan V, Guduru P R. J. Power Sources, 2010, 195: 5062.
[24] Wen Z S, Wang K, Xie J Y. J. Inorg. Mater., 2007, 3: 012.
[25] Chan C K, Ruffo R, Hong S S, Huggins R A, Cui Y. J. Power Sources, 2009, 189: 34.
[26] Lee Y M, Lee J Y, Shim H T, Lee J K, Park J K. J. Electrochem. Soc., 2007, 154: A515.
[27] Choi N S, Yew K H, Kim H, Kim S S, Choi W U. J. Power Sources, 2007, 172: 404.
[28] Key B, Bhattacharyya R, Morcrette M, Sezné C V, Tarascon J M, Grey C P. J. Am. Chem. Soc., 2009, 131: 9239.
[29] Baranchugov V, Markevich E, Pollak E, Salitra G, Aurbach D. Electrochem. Commun., 2007, 9: 796.
[30] Jung H, Park M, Yoon Y G, Kim G B, Joo S K. J. Power Sources, 2003, 115: 346.
[31] Yang Z, Guo J, Xu S, Yu Y, Abruña H D, Archer L A. Electrochem. Commun., 2013, 28: 40.
[32] Seong I W, Kim K T, Yoon W Y. J. Power Sources, 2009, 189: 511.
[33] Nagao Y, Sakaguchi H, Honda H, Fukunaga T, Esaka T. J. Electrochem. Soc., 2004, 151: A1572.
[34] Miyachi M, Yamamoto H, Kawai H, Ohta T, Shirakata M. J. Electrochem. Soc., 2005, 152: A2089.
[35] Yang J, Takeda Y, Imanishi N, Capiglia C, Xie J, Yamamoto O. Solid State Ionics, 2002, 152: 125.
[36] Netz A, Huggins R A. Solid State Ionics, 2004, 175: 215.
[37] Chen J, Cheng F. Acc. Chem. Res., 2009, 42: 713.
[38] Guo Y G, Hu J S, Wan L J. Adv. Mater., 2008, 20: 2878.
[39] Beaulieu L, Eberman K, Turner R, Krause L, Dahn J. Electrochem. Solid State Lett., 2001, 4: A137.
[40] Li H, Huang X, Chen L, Wu Z, Liang Y. Electrochem. Solid State Lett., 1999, 2: 547.
[41] Li H, Huang X, Chen L, Zhou G, Zhang Z, Yu D, Mo Y J, Pei N. Solid State Ionics, 2000, 135: 181.
[42] Sandu I, Moreau P, Guyomard D, Brousse T, Roue L. Solid State Ionics, 2007, 178: 1297.
[43] Kim H, Seo M, Park M H, Cho J. Angew. Chem. Int. Ed., 2010, 49: 2146.
[44] Bourderau S, Brousse T, Schleich D. J. Power Sources, 1999, 81: 233.
[45] Ohara S, Suzuki J, Sekine K, Takamura T. J. Power Sources, 2003, 119: 591.
[46] Lee K L, Jung J Y, Lee S W, Moon H S, Park J W. J. Power Sources, 2004, 129: 270.
[47] Uehara M, Suzuki J, Tamura K, Sekine K, Takamura T. J. Power Sources, 2005, 146: 441.
[48] Takamura T, Uehara M, Suzuki J, Sekine K, Tamura K. J. Power Sources, 2006, 158: 1401.
[49] Park M, Wang G, Liu H K, Dou S X. Electrochim. Acta, 2006, 51: 5246.
[50] Zhang T, Zhang H, Yang L, Wang B, Wu Y, Takamura T. Electrochim. Acta, 2008, 53: 5660.
[51] Guo H, Zhao H, Yin C, Qiu W. Mater. Sci. Eng. B, 2006, 131: 173.
[52] Yoshimura K, Suzuki J, Sekine K, Takamura T. J. Power Sources, 2005, 146: 445.
[53] Maranchi J, Hepp A, Kumta P. Electrochem. Solid State Lett., 2003, 6: A198.
[54] Takamura T, Ohara S, Uehara M, Suzuki J, Sekine K. J. Power Sources, 2004, 129: 96.
[55] Zhang Y, Tang Y, Wang N, Yu D, Lee C, Bello I, Lee S. Appl. Phys. Lett., 1998, 72: 1835.
[56] Wu Y, Cui Y, Huynh L, Barrelet C J, Bell D C, Lieber C M. Nano Lett., 2004, 4: 433.
[57] Ge S, Jiang K, Lu X, Chen Y, Wang R, Fan S. Adv. Mater., 2005, 17: 56.
[58] Bogart T E, Dey S, Lew K K, Mohney S E, Redwing J M. Adv. Mater., 2005, 17: 114.
[59] Zhang X Y, Zhang L, Meng G, Li G, Jin Phillipp N, Phillipp F. Adv. Mater., 2001, 13: 1238.
[60] Pan Z, Dai Z, Xu L, Lee S, Wang Z. J. Phys. Chem. B, 2001, 105: 2507.
[61] Niu J, Sha J, Yang D. Physica E, 2004, 24: 278.
[62] Niu J, Sha J, Yang D. Physica E, 2004, 23: 131.
[63] Peng K, Hu J, Yan Y, Wu Y, Fang H, Xu Y, Lee S, Zhu J. Adv. Funct. Mater., 2006, 16: 387.
[64] 刘莉(Liu L), 曹阳(Cao Y), 贺军辉(He J H), 杨巧文(Yang Q W). 化学进展(Progress in Chemistry), 2012, 25: 248.
[65] Huang R, Zhu J. Mater. Chem. Phys., 2010, 121: 519.
[66] Zhang C, Gu L, Kaskhedikar N, Cui G, Maier J. ACS Appl. Mater. Interfaces, 2013, 5: 12340.
[67] Park M H, Kim M G, Joo J, Kim K, Kim J, Ahn S, Cui Y, Cho J. Nano Lett., 2009, 9: 3844.
[68] Song T, Xia J, Lee J H, Lee D H, Kwon M S, Choi J M, Wu J, Doo S K, Chang H, Park W I. Nano Lett., 2010, 10: 1710.
[69] Wen Z, Lu G, Mao S, Kim H, Cui S, Yu K, Huang X, Hurley P T, Mao O, Chen J. Electrochem. Commun., 2013, 29: 67.
[70] Zhou Y, Jiang X, Chen L, Yue J, Xu H, Yang J, Qian Y. Electrochim. Acta, 2014, 127: 252.
[71] Lam C, Zhang Y, Tang Y, Lee C, Bello I, Lee S. J. Cryst. Growth, 2000, 220: 466.
[72] Ma H, Cheng F, Chen J Y, Zhao J Z, Li C S, Tao Z L, Liang J. Adv. Mater., 2007, 19: 4067.
[73] Kim H, Han B, Choo J, Cho J. Angew. Chem. Int. Ed., 2008, 120: 10305.
[74] Lv R, Yang J, Gao P, Nuli Y, Wang J. J. Alloys Compd., 2010, 490: 84.
[75] Jiang Z, Li C, Hao S, Zhu K, Zhang P. Electrochim. Acta, 2014, 115: 393.
[76] Shin H C, Corno J A, Gole J L, Liu M. J. Power Sources, 2005, 139: 314.
[77] Kang D K, Corno J A, Gole J L, Shin H C. J. Electrochem. Soc., 2008, 155: A276.
[78] Liu Y, Chen B, Cao F, Chan H L, Zhao X, Yuan J. J. Mater. Chem., 2011, 21: 17083.
[79] Ge M, Lu Y, Ercius P, Rong J, Fang X, Mecklenburg M, Zhou C. Nano Lett., 2013, 14: 261.
[80] Ge M, Rong J, Fang X, Zhang A, Lu Y, Zhou C. Nano Res., 2013, 6: 174.
[81] Bao Z, Weatherspoon M R, Shian S, Cai Y, Graham P D, Allan S M, Ahmad G, Dickerson M B, Church B C, Kang Z. Nature, 2007, 446: 172.
[82] Du Y, Zhu G, Wang K, Wang Y, Wang C, Xia Y. Electrochem. Commun., 2013, 36: 107.
[83] Zhu S, Zhu C, Ma J, Meng Q, Guo Z, Yu Z, Lu T, Li Y, Zhang D, Lau W M. RSC Adv., 2013, 3: 6141.
[84] Hong I, Scrosati B, Croce F. Solid State Ionics, 2013, 232: 24.
[85] Jia H, Gao P, Yang J, Wang J, Nuli Y, Yang Z. Adv. Energy Mater., 2011, 1: 1036.
[86] Du F H, Wang K X, Fu W, Gao P F, Wang J F, Yang J, Chen J S. J. Mater. Chem. A, 2013, 1: 13648.
[87] Yao Y, Mcdowell M T, Ryu I, Wu H, Liu N, Hu L, Nix W D, Cui Y. Nano Lett., 2011, 11: 2949.
[88] Chen D, Mei X, Ji G, Lu M, Xie J, Lu J, Lee J Y. Angew. Chem. Int. Ed., 2012, 51: 2409.
[89] Liu N, Wu H, Mcdowell M T, Yao Y, Wang C, Cui Y. Nano Lett., 2012, 12: 3315.
[90] Iwamura S, Nishihara H, Kyotani T. J. Phys. Chem. C, 2012, 116: 6004.
[91] Ru Y, Evans D G, Zhu H, Yang W. RSC Adv., 2014, 4: 71.
[92] Niu J, Zhang S, Niu Y, Song R, Song H, Chen X, Zhou J, Hong S. RSC Adv., 2014, 4: 29435.
[93] Liu N, Lu Z, Zhao J, Mcdowell M T, Lee H W, Zhao W, Cui Y. Nat. Nanotechnol., 2014, 9: 187.
[94] Kim H, Choi J, Sohn H J, Kang T. J. Electrochem. Soc., 1999, 146: 4401.
[95] Roberts G, Cairns E, Reimer J. J. Power Sources, 2002, 110: 424.
[96] Yan J, Huang H, Zhang J, Yang Y. J. Power Sources, 2008, 175: 547.
[97] Hatchard T, Dahn J. J. Electrochem. Soc., 2004, 151: A1628.
[98] Kwon Y, Kim H, Doo S G, Cho J. Chem. Mater., 2007, 19: 982.
[99] Hatchard T, Obrovac M, Dahn J. J. Electrochem. Soc., 2005, 152: A2335.
[100] Yoon S, Park C M, Kim H, Sohn H J. J. Power Sources, 2007, 167: 520.
[101] Wolfenstine J. J. Power Sources, 2003, 124: 241.
[102] Hwang C M, Park J W. J. Power Sources, 2011, 196: 6772.
[103] Hwang C M, Lim C H, Park J W. Thin Solid Films, 2011, 519: 2332.
[104] Song T, Cheng H, Choi H, Lee J H, Han H, Lee D H, Yoo D S, Kwon M S, Choi J M, Doo S G. ACS Nano, 2011, 6: 303.
[105] Wang G, Sun L, Bradhurst D, Zhong S, Dou S, Liu H. J. Power Sources, 2000, 88: 278.
[106] Lee H Y, Kim Y L, Hong M K, Lee S M. J. Power Sources, 2005, 141: 159.
[107] Park M S, Kang Y M, Rajendran S, Kwon H S, Lee J Y. Mater. Chem. Phys., 2006, 100: 496.
[108] Kim H, Im D, Doo S G. J. Power Sources, 2007, 174: 588.
[109] Zhou S, Liu X, Wang D. Nano Lett., 2010, 10: 860.
[110] Kang K, Song K, Heo H, Yoo S, Kim G S, Lee G, Kang Y M, Jo M H. Chem. Sci., 2011, 2: 1090.
[111] Zhang H, Braun P V. Nano Lett., 2012, 12: 2778.
[112] Xiao Q, Zhang Q, Fan Y, Wang X, Susantyoko R A. Energy Environ. Sci., 2014. 7: 2261.
[113] Kim B C, Uono H, Satou T, Fuse T, Ishihara T, Ue M, Senna M. J. Electrochem. Soc., 2005, 152: A523.
[114] Kang Y M, Park M S, Song M S, Lee J Y. J. Power Sources, 2006, 162: 1336.
[115] Yoon S, Lee S I, Kim H, Sohn H J. J. Power Sources, 2006, 161: 1319.
[116] Zhang Z, Wang Y, Tan Q, Li D, Chen Y, Zhong Z, Su F. Nanoscale, 2014, 6: 371.
[117] Hwang S M, Lee H Y, Jang S W, Lee S M, Lee S J, Baik H K, Lee J Y. Electrochem. Solid State Lett., 2001, 4: A97.
[118] Yang X, Wen Z, Huang S, Zhu X, Zhang X. Solid State Ionics, 2006, 177: 2807.
[119] Kim J B, Lee H Y, Lee K S, Lim S H, Lee S M. Electrochem. Commun., 2003, 5: 544.
[120] Dong H, Feng R, Ai X, Cao Y, Yang H. Electrochim. Acta, 2004, 49: 5217.
[121] Weydanz W, Wohlfahrt Mehrens M, Huggins R. J. Power Sources, 1999, 81: 237.
[122] Kim Y L, Lee H Y, Jang S W, Lim S H, Lee S J, Baik H K, Yoon Y S, Lee S M. Electrochim. Acta, 2003, 48: 2593.
[123] Kim H S, Chung K Y, Cho B W. J. Power Sources, 2009, 189: 108.
[124] Edfouf Z, Cuevas F, Latroche M, Georges C, Jordy C, Hézèque T, Caillon G, Jumas J C, Sougrati M T. J. Power Sources, 2011, 196: 4762.
[125] Yang X, Wen Z, Xu X, Lin B, Huang S. J. Power Sources, 2007, 164: 880.
[126] Yu J, Zhan H, Wang Y, Zhang Z, Chen H, Li H, Zhong Z, Su F. J. Power Sources, 2013, 112.
[127] Holzapfel M, Buqa H, Scheifele W, Novák P, Petrat F M. Chem. Commun., 2005, 1566.
[128] Zhu X, Chen H, Wang Y, Xia L, Tan Q, Li H, Zhong Z, Su F, Zhao X. J. Mater. Chem. A, 2013, 1: 4483.
[129] Cahen S, Janot R, Laffont Dantras L, Tarascon J M. J. Electrochem. Soc., 2008, 155: A512.
[130] Zuo P, Yin G, Ma Y. Electrochim. Acta, 2007, 52: 4878.
[131] Morita T, Takami N. J. Electrochem. Soc., 2006, 153: A425.
[132] Du C, Gao C, Yin G, Chen M, Wang L. Energy Environ. Sci., 2011, 4: 1037.
[133] Ma C, Ma C, Wang J, Wang H, Shi J, Song Y, Guo Q, Liu L. Carbon, 2014, 72: 38.
[134] Xie J, Cao G, Zhao X. Mater. Chem. Phys., 2004, 88: 295.
[135] Wang G, Yao J, Liu H. Electrochem. Solid State Lett., 2004, 7: A250.
[136] Magasinski A, Dixon P, Hertzberg B, Kvit A, Ayala J, Yushin G. Nat. Mater., 2010, 9: 353.
[137] Chen Y, Nie M, Lucht B L, Saha A, Guduru P R, Bose A. ACS Appl. Mater. Interfaces, 2014, 6: 4678.
[138] Kwon Y, Park G S, Cho J. Electrochim. Acta, 2007, 52: 4663.
[139] Gao P, Fu J, Yang J, Lv R, Wang J, Nuli Y, Tang X. Phys. Chem. Chem. Phys., 2009, 11: 11101.
[140] Shao D, Tang D, Mai Y, Zhang L. J. Mater. Chem. A, 2013, 1: 15068.
[141] Wilson A, Xing W, Zank G, Yates B, Dahn J. Solid State Ionics, 1997, 100: 259.
[142] Wen Z, Yang J, Wang B, Wang K, Liu Y. Electrochem. Commun., 2003, 5: 165.
[143] Guo Z, Milin E, Wang J, Chen J, Liu H. J. Electrochem. Soc., 2005, 152: A2211.
[144] Datta M K, Kumta P N. J. Power Sources, 2007, 165: 368.
[145] Lee J K, Kung M C, Trahey L, Missaghi M N, Kung H H. Chem. Mater., 2008, 21: 6.
[146] Datta M K, Kumta P N. J. Power Sources, 2006, 158: 557.
[147] Ng S, Wang J, Konstantinov K, Wexler D, Chew S, Guo Z, Liu H. J. Power Sources, 2007, 174: 823.
[148] Hu Y S, Demir-Cakan R, Titirici M M, Müller J O, Schlgl R, Antonietti M, Maier J. Angew. Chem. Int. Ed., 2008, 47: 1645.
[149] Xu Y, Yin G, Ma Y, Zuo P, Cheng X. J. Mater. Chem., 2010, 20: 3216.
[150] Du C, Chen M, Wang L, Yin G. J. Mater. Chem., 2011, 21: 15692.
[151] Jung D S, Hwang T H, Park S B, Choi J W. Nano Lett., 2013, 13: 2092.
[152] Yin Y X, Xin S, Wan L J, Li C J, Guo Y G. J. Phys. Chem. C, 2011, 115: 14148.
[153] Ji L, Zhang X. Electrochem. Commun., 2009, 11: 1146.
[154] Zheng G, Yang Y, Cha J J, Hong S S, Cui Y. Nano Lett., 2011, 11: 4462.
[155] Zhang C, Yu R, Zhou T, Chen Z, Liu H, Guo Z. Carbon, 2014, 72: 169.
[156] Kong J, Yee W A, Wei Y, Yang L, Ang J M, Phua S L, Wong S Y, Zhou R, Dong Y, Li X. Nanoscale, 2013, 5: 2967.
[157] Jeong G, Kim J G, Park M S, Seo M, Hwang S M, Kim Y U, Kim Y J, Kim J H, Dou S X. ACS Nano, 2014, 8: 2977.
[158] Wang W, Kumta P N. J. Power Sources, 2007, 172: 650.
[159] Gómez-Cámer J L, Morales J, Sánchez L. J. Mater. Chem., 2011, 21: 811.
[160] Wang B, Li X, Luo B, Zhang X, Shang Y, Cao A, Zhi L. ACS Appl. Mater. Interfaces, 2013, 5: 6467.
[161] Shu J, Li H, Yang R, Shi Y, Huang X. Electrochem. Commun., 2006, 8: 51.
[162] Kim T, Mo Y, Nahm K, Oh S M. J. Power Sources, 2006, 162: 1275.
[163] Jang S M, Miyawaki J, Tsuji M, Mochida I, Yoon S H. Carbon, 2009, 47: 3383.
[164] Cui L F, Yang Y, Hsu C M, Cui Y. Nano Lett., 2009, 9: 3370.
[165] Wang W, Kumta P N. ACS Nano, 2010, 4: 2233.
[166] Fan Y, Zhang Q, Xiao Q, Wang X, Huang K. Carbon, 2013, 59: 264.
[167] Zhao C, Li Q, Wan W, Li J, Li J, Zhou H, Xu D. J. Mater. Chem., 2012, 22: 12193.
[168] Hertzberg B, Alexeev A, Yushin G. J. Am. Chem. Soc., 2010, 132: 8548.
[169] Wang B, Li X, Qiu T, Luo B, Ning J, Li J, Zhang X, Liang M, Zhi L. Nano Lett., 2013, 13: 5578.
[170] Wang B, Li X, Zhang X, Luo B, Zhang Y, Zhi L. Adv. Mater., 2013, 25: 3560.
[171] Hasegawa T, Mukai S R, Shirato Y, Tamon H. Carbon, 2004, 42: 2573.
[172] Jung Y S, Lee K T, Oh S M. Electrochim. Acta, 2007, 52: 7061.
[173] Guo P, Zhu G, Song H, Chen X, Zhang S. Phys. Chem. Chem. Phys., 2011, 13: 17818.
[174] Zhu L, Zhang S, Cui Y, Song H, Chen X. Electrochim. Acta, 2013, 89: 18.
[175] Zhou J, Song H, Zhang X, Chen X. Chem. Commun., 2014, 50: 1886.
[176] Zhang S, Zhu L, Song H, Chen X, Zhou J. Nano Energy, 2014, 10: 172.
[177] Guo P, Song H, Chen X. Electrochem. Commun., 2009, 11: 1320.
[178] Du X, Guo P, Song H, Chen X. Electrochim. Acta, 2010, 55: 4812.
[179] 李健(Li J), 官亦标(Guan Y B), 傅凯(Fu K), 苏岳锋(Su Y F), 包丽颖(Bao L Y), 吴锋(Wu F). 化学进展(Progress in Chemistry), 2014, 26:1233.
[180] Chou S L, Wang J Z, Choucair M, Liu H K, Stride J A, Dou S X. Electrochem. Commun., 2010, 12: 303.
[181] 李海(Li H), 吕春祥(Lü C X). 新型炭材料(New Carbon Materials), 2014, 29: 295.
[182] Lee J K, Smith K B, Hayner C M, Kung H H. Chem. Commun., 2010, 46: 2025.
[183] Wang J Z, Zhong C, Chou S L, Liu H K. Electrochem. Commun., 2010, 12: 1467.
[184] Tao H C, Fan L Z, Mei Y, Qu X. Electrochem. Commun., 2011, 13: 1332.
[185] Wang B, Li X, Luo B, Jia Y, Zhi L. Nanoscale, 2013, 5: 1470.
[186] Wang B, Li X, Zhang X, Luo B, Jin M, Liang M, Dayeh S A, Picraux S, Zhi L. ACS Nano, 2013, 7: 1437.
[187] Evanoff K, Magasinski A, Yang J, Yushin G. Adv Energy Mater., 2011, 1: 495.
[188] Ren J G, Wu Q H, Hong G, Zhang W J, Wu H, Amine K, Yang J, Lee S T. Energy Technol., 2013, 1: 77.
[189] Zhou X, Yin Y X, Wan L J, Guo Y G. Chem. Commun., 2012, 48: 2198.
[190] Zhou X, Yin Y X, Cao A M, Wan L J, Guo Y G. ACS Appl. Mater. Interfaces, 2012, 4: 2824.
[191] He Y S, Gao P, Chen J, Yang X, Liao X Z, Yang J, Ma Z F. RSC Adv., 2011, 1: 958.
[192] Xin X, Zhou X, Wang F, Yao X, Xu X, Zhu Y, Liu Z. J. Mater. Chem., 2012, 22: 7724.
[193] Luo J, Zhao X, Wu J, Jang H D, Kung H H, Huang J. J. Phys. Chem. Lett., 2012, 3: 1824.
[194] Wen Y, Zhu Y, Langrock A, Manivannan A, Ehrman S H, Wang C. Small, 2013, 9: 2810.
[195] Zhou X, Yin Y X, Wan L J, Guo Y G. Adv. Energy Mater., 2012, 2: 1086.
[196] Zhu Y, Liu W, Zhang X, He J, Chen J, Wang Y, Cao T. Langmuir, 2013, 29: 744.
[197] Lee W, Hwang T, Hwang J, Kim H, Lim J, Jeong H, Shim J, Han T, Kim J, Choi J, Kim S. Energy Environ. Sci., 2014, 7: 621.
[198] Chang J, Huang X, Zhou G, Cui S, Hallac P B, Jiang J, Hurley P T, Chen J. Adv. Mater., 2014, 26: 758.
[199] Hanai K, Liu Y, Imanishi N, Hirano A, Matsumura M, Ichikawa T, Takeda Y. J. Power Sources, 2005, 146: 156.
[200] Kim I S, Kumta P, Blomgren G. Electrochem. Solid-State Lett., 2000, 3: 493.
[201] Yang J, De Guzman R C, Salley S O, Ng K S, Chen B H, Cheng M M C. J. Power Sources, 2014, 269: 520.
[202] Patel P, Kim I S, Kumta P. Mater. Sci. Eng. B, 2005, 116: 347.
[203] Kim I S, Blomgren G, Kumta P. J. Power Sources, 2004, 130: 275.
[204] Jeon B J, Lee J K. Electrochim. Acta, 2011, 56: 6261.
[205] Zhang X, Pan G, Li G, Qu J, Gao X. Solid State Ionics, 2007, 178: 1107.
[206] Guo Z, Wang J, Liu H, Dou S. J. Power Sources, 2005, 146: 448.
[207] Chew S, Guo Z, Wang J, Chen J, Munroe P, Ng S, Zhao L, Liu H. Electrochem. Commun., 2007, 9: 941.
[208] Du Z, Zhang S, Liu Y, Zhao J, Lin R, Jiang T. J. Mater. Chem., 2012, 22: 11636.
[209] Cai J J, Zuo P J, Cheng X Q, Xu Y H, Yin G P. Electrochem. Commun., 2010, 12: 1572.
[210] Wu H, Yu G, Pan L, Liu N, Mcdowell M T, Bao Z, Cui Y. Nat. Commun., 2013, 4: 1943.
[211] 孙鹏(Sun P), 宋怀河(Song H H), 周继升(Zhou J S), 陈晓红(Chen X H), 张洪坤(Zhang H K), 武斌(Wu B). 炭素技术(Carbon Techniques), 2012, 31: 5.
[212] Li J, Christensen L, Obrovac M, Hewitt K, Dahn J. J. Electrochem. Soc., 2008, 155: A234.
[213] Hassan F M, Chabot V, Elsayed A R, Xiao X, Chen Z. Nano Lett., 2013, 14: 277.
[214] Yoshio M, Tsumura T, Dimov N. J. Power Sources, 2005, 146: 10.
[215] Kim Y L, Sun Y K, Lee S M. Electrochim. Acta, 2008, 53: 4500.
[216] Zhou X, Cao A M, Wan L J, Guo Y G. Nano Res., 2012, 5: 845.
[217] Tang H, Tu J P, Liu X Y, Zhang Y J, Huang S, Li W Z, Wang X L, Gu C D. J. Mater. Chem. A, 2014, 2: 5834.
[218] Choi N S, Yew K H, Choi W U, Kim S S. J. Power Sources, 2008, 177: 590.
[219] Park H K, Kong B S, Oh E S. Electrochem. Commun., 2011, 13: 1051.
[220] Lestriez B, Bahri S, Sandu I, Roué L, Guyomard D. Electrochem. Commun., 2007, 9: 2801.
[221] Hochgatterer N, Schweiger M, Koller S, Raimann P, Whrle T, Wurm C, Winter M. Electrochem. Solid-State Lett., 2008, 11: A76.
[222] Bridel J S, Azais T, Morcrette M, Tarascon J M, Larcher D. Chem. Mater., 2009, 22: 1229.
[223] Magasinski A, Zdyrko B, Kovalenko I, Hertzberg B, Burtovyy R, Huebner C F, Fuller T F, Luzinov I, Yushin G. ACS Appl. Mater. Interfaces, 2010, 2: 3004.
[224] Kovalenko I, Zdyrko B, Magasinski A, Hertzberg B, Milicev Z, Burtovyy R, Luzinov I, Yushin G. Science, 2011, 334: 75.
[225] Koo B, Kim H, Cho Y, Lee K T, Choi N S, Cho J. Angew. Chem. Int. Ed., 2012, 51: 8762.
[226] Ryou M H, Kim J, Lee I, Kim S, Jeong Y K, Hong S, Ryu J H, Kim T S, Park J K, Lee H. Adv. Mater., 2013, 25: 1571.
[227] Liu G, Xun S, Vukmirovic N, Song X, Olalde-Velasco P, Zheng H, Battaglia V S, Wang L, Yang W. Adv. Mater., 2011, 23: 4679.
[228] Wang C, Wu H, Chen Z, Mcdowell M T, Cui Y, Bao Z. Nat. Chem., 2013, 5: 1042.
[229] Wachtler M, Besenhard J O, Winter M. J. Power Sources, 2001, 94: 189.
[230] Dalavi S, Guduru P, Lucht B L. J. Electrochem. Soc., 2012, 159: A642.
[231] Han G B, Ryou M H, Cho K Y, Lee Y M, Park J K. J. Power Sources, 2010, 195: 3709.
[232] Chen L, Wang K, Xie X, Xie J. J. Power Sources, 2007, 174: 538.
[233] Li M Q, Qu M Z, He X Y, Yu Z L. Electrochim. Acta, 2009, 54: 4506.
[234] Choi N S, Yew K H, Lee K Y, Sung M, Kim H, Kim S S. J. Power Sources, 2006, 161: 1254.
[235] Nakai H, Kubba T, Kita A, Kawashima A. J. Electrochem. Soc., 2011, 158: A798.
[236] Buddieámullins C. Chem. Commun., 2012, 48: 7268.
[237] Chockla A M, Klavetter K C, Mullins C B, Korgel B A. Chem. Mater., 2012, 24: 3738.
[238] Bordes A, Eom K, Fuller T F. J. Power Sources, 2014, 257: 163.
[239] Nie M, Abraham D P, Chen Y, Bose A, Lucht B L. J. Phys. Chem. C, 2013, 117: 13403.
[1] Kedi Cai, Shuang Yan, Tianye Xu, Xiaoshi Lang, Zhenhua Wang. Investigation of Electrode Materials for Lithium Ion Capacitor Battery [J]. Progress in Chemistry, 2021, 33(8): 1404-1413.
[2] Yang Chen, Xiaoli Cui. Titanium Dioxide Anode Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1249-1269.
[3] Changhuan Zhang, Nianwu Li, Xiuqin Zhang. Electrode Materials for Flexible Lithium-Ion Battery [J]. Progress in Chemistry, 2021, 33(4): 633-648.
[4] Wei Zhang, Xiaopeng Qi, Sheng Fang, Jianhua Zhang, Bimeng Shi, Juanyu Yang. Effects of Carbon on Silicon-Carbon Composites in Lithium-Ion Batteries [J]. Progress in Chemistry, 2020, 32(4): 454-466.
[5] Haodeng Chen, Jianxing Xu, Shaomin Ji, Wenjin Ji, Lifeng Cui, Yanping Huo. Application of MOFs Derived Metal Oxides and Composites in Anode Materials of Lithium Ion Batteries [J]. Progress in Chemistry, 2020, 32(2/3): 298-308.
[6] Yanchen Liu, Bin Huang, Yijia Shao, Muyuan Shen, Li Du, Shijun Liao. Potassium-Ion Battery and Its Recent Research Progress [J]. Progress in Chemistry, 2019, 31(9): 1329-1340.
[7] Zhimin Jiang, Li Wang, Min Shen, Huichuang Chen, Guoqiang Ma, Xiangming He. Electrolyte Additives for Interfacial Modification of Cathodes in Lithium-Ion Battery [J]. Progress in Chemistry, 2019, 31(5): 699-713.
[8] Zhenjie Li, Du Zhong, Jie Zhang, Jinwei Chen, Gang Wang, Ruilin Wang. Silicon Nanoparticles/Carbon Composites for Lithium-Ion Battery [J]. Progress in Chemistry, 2019, 31(1): 201-209.
[9] Jiao Lin, Chunwei Liu, Hongbin Cao, Li Li, Renjie Chen, Zhi Sun. Recovery of Spent Lithium Ion Batteries Based on High Temperature Chemical Conversion [J]. Progress in Chemistry, 2018, 30(9): 1445-1454.
[10] Shuaijin Wu, Juanyu Yang, Bing Yu, Sheng Fang, Zhaohui Wu, Bimeng Shi. Nano/Micro Structured Silicon-Based Negative Materials [J]. Progress in Chemistry, 2018, 30(2/3): 272-285.
[11] Ma Guoqiang, Wang Li, Zhang Janjun, Chen Huichuang, He Xiangming, Ding Yuansheng. Lithium-Ion Battery Electrolyte Containing Fluorinated Solvent and Additive [J]. Progress in Chemistry, 2016, 28(9): 1299-1312.
[12] Ming Hai, Ming Jun, Qiu Jingyi, Yu Zhongbao, Li Meng, ZhengJunwei. Lithium-Ion Full Batteries Based on the Anode of Non-Metallic Lithium [J]. Progress in Chemistry, 2016, 28(2/3): 204-218.
[13] Liu Xin, Zhao Hailei, Xie Jingying, Lv Pengpeng, Wang Ke, Cui Jiajia. SiOx(0<x≤2) Based Anode Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2015, 27(4): 336-348.
[14] Lou Shuaifeng, Cheng Xinqun, Ma Yulin, Du Chunyu, Gao Yunzhi, Yin Geping. Nb-Based Oxides as Anode Materials for Lithium Ion Batteries [J]. Progress in Chemistry, 2015, 27(2/3): 297-309.
[15] Huang Zhao, Wang Dan, Zhang Chunming, He Dannong. Effects of Different Doping Sites on the Structure and Performance of Li4Ti5O12 Material [J]. Progress in Chemistry, 2014, 26(12): 1914-1923.