中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (8): 1002-1013 DOI: 10.7536/PC150150 Previous Articles   Next Articles

The Synthesis of Nanosheets Zeolite and Its Catalytic Application

Min Yuanyuan, Shang Yunshan, Song Yu, Li Guodong, Gong Yanjun*   

  1. State Key Laboratory of Heavy Oil Processing, Key Laboratory of Catalysis, China National Petroleum Corporation, College of Chemistry Engineering, China University of Petroleum-Beijing, Beijing 102249, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the State Key Development Program for Basic Research of China (No. 2012CB215002) and the National Natural Science Foundation of China (No. 21176255, 21276278).
PDF ( 2314 ) Cited
Export

EndNote

Ris

BibTeX

Nanosheets zeolite is a brand new type of pseudo 2-dimensional zeolite, possessing distinctive growth trend in the (010) crystal surface and hierarchical micro-mesoporous texture, which has triggered an immense interest in the development of nanosheets and its application. The specific morphology can be obtained and dominantly controlled by using multi-quaternary ammonium surfactants as the structure directing agent. Due to its predominant micro-mesoporous property, optimized surface acidity and lower restriction of the diffusion of macro-molecule with respect to conventional bulk zeolite, nanosheets zeolite has tremendous application potential in adsorption and catalysis fields. This review summarizes the advances in the synthesis and the characterization of ZSM-5 zeolite nanosheets with novel morphology. Furthermore, nanosheets zeolite exhibits premium advantages in many applications. Some different reactions that MFI nanosheets zeolite has been applied to are discussed in detail, including methanol conversion to hydrocarbons and macro-molecules involved reaction, i.e. Beckman rearragement reactions. Additionally, newly developed metal-modified nanosheets zeolite has been applied to isomerization, hydroxylation reaction and the epoxidation of olefins etc. Although nanosheets zeolite possesses a large number of strong points compared with conventional zeolite, there is still a long way to go for MFI nanosheets zeolite in improving the synthesis in a more facile/economical way as well as expanding the applications. The outlook section cast great expectation on nanosheets for enlightening the innovative design of other materials.

Contents
1 Introduction
2 Synthesis of nanosheets zeolites by quaternary ammoniums
2.1 MFI nanosheets zeolite
2.2 Nanosheets zeolite with two different framework intergrown
2.3 Hierarchical zeolite with other kinds of topologies
3 Properties of MFI nanosheets zeolite
3.1 2-Dimensional growth orientation
3.2 Ordered mesoporosity
3.3 Acid properties
3.4 Adsorption properties
4 Application of MFI nanosheet zeolite
4.1 Methanol conversion to hydrocarbons
4.2 Beckman rearrangement reaction
4.3 Applications over the metal-modified MFI nanosheets
5 Conclusion and outlook

CLC Number: 

[1] Baerlocher C, McCusker L B, Olson D H, Atlas of Zeolite Framework Types. Elsevier, 2007.
[2] Gopalakrishnan S, Zampieri A, Schwieger W. J. Catal., 2008, 260 (1): 193.
[3] Perez-Ramirez J, Christensen C H, Egeblad K, Christensen C H, Groen J C. Chem. Soc. Rev., 2008, 37 (11): 2530.
[4] Wang H, Pinnavaia T J. Angew. Chem. Int. Ed., 2006, 45 (45): 7603.
[5] Wang J, Yue W, Zhou W, Coppens M O. Microporous Mesoporous Mater., 2009, 120 (1/2): 19.
[6] Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R. Nature, 2009, 461 (7261): 246.
[7] Machoke A G, Knoke I Y, Lopez-Orozco S, Schmiele M, Selvam T, Marthala V R R, Spiecker E, Unruh T, Hartmann M, Schwieger W. Microporous Mesoporous Mater., 2014, 190: 324.
[8] Na K, Park W, Seo Y, Ryoo R. Chem. Mater., 2011, 23 (5): 1273.
[9] 王务刚(Wang W W), 张少龙(Zhang S L), 张兰兰(Zhang L L), 王艳(Wang Yan), 刘晓玲(Liu X L), 巩雁军(Gong Y J), 窦涛(Dou T). 物理化学学报(Acta Phys. Chim. Sin.), 2013, (09): 2035.
[10] Na K, Choi M, Park W, Sakamoto Y, Terasaki O, Ryoo R. J. Am. Chem. Soc., 2010, 132 (12): 4169.
[11] Park W, Yu D, Na K, Jelfs K E, Slater B, Sakamoto Y, Ryoo R. Chem. Mater., 2011, 23 (23): 5131.
[12] Liu B, Li C, Ren Y, Tan Y, Xi H, Qian Y. Chem. Eng. J., 2012, 210: 96.
[13] Na K, Jo C, Kim J, Cho K, Jung J, Seo Y, Messinger R J, Chmelka B F, Ryoo R. Science, 2011, 333 (6040): 328.
[14] Jung J, Jo C, Cho K, Ryoo R. J. Mater. Chem., 2012, 22 (11): 4637.
[15] Xu D, Jing Z, Cao F, Sun H, Che S. Chem. Mater., 2014, 26 (15): 4612.
[16] Kore R, Srivastava R, Satpati B. Chem. Eur. J., 2014, 20 (36): 11511.
[17] Emdadi L, Liu D X. J. Mater. Chem. A, 2014, 2 (33): 13388.
[18] Emdadi L, Wu Y, Zhu G, Chang C C, Fan W, Pham T, Lobo R F, Liu D. Chem. Mater., 2014, 26 (3): 1345.
[19] Kumar P, Varoon Agrawal K, Tsapatsis M, Andre Mkhoyan K. Microsc. Microanal., 2014, 20 (S3): 390.
[20] Xu D, Swindlehurst G R, Wu H, Olson D H, Zhang X, Tsapatsis M. Adv. Funct. Mater., 2014, 24 (2): 201.
[21] Zhang X, Liu D, Xu D, Asahina S, Cychosz K A, Agrawal K V, Al Wahedi Y, Bhan A, Al Hashimi S, Terasaki O, Thommes M, Tsapatsis M. Science, 2012, 336 (6089): 1684.
[22] Khaleel M, Wagner A J, Mkhoyan K A, Tsapatsis M. Angew. Chem. Int. Ed. Engl., 2014, 53 (36): 9456.
[23] Inayat A, Schneider C, Schwieger W. Chem. Commun., 2015, 51(2): 279.
[24] Na K, Choi M, Ryoo R. J. Mater. Chem., 2009, 19 (37): 6713.
[25] Choi M, Na K, Ryoo R. Chem. Commun., 2009, (20): 2845.
[26] Jo C, Jung J, Ryoo R. Microporous Mesoporous Mater., 2014, 194: 83.
[27] Na K, Choi M, Ryoo R. Microporous Mesoporous Mater., 2013, 166: 3.
[28] Cui D, Zhou B, Yin J, Lou M. Aust. J. Chem., 2014, 67: 929.
[29] Roth W J, ?ejka J. Catal. Sci. Technol., 2011, 1 (1): 43.
[30] Selvam T, Inayat A, Schwieger W. Dalton Trans., 2014, 43 (27): 10365.
[31] Tsapatsis M. AIChE J., 2014, 60 (7): 2374.
[32] Opanasenko M V, Shamzhy M V, Jo C, Ryoo R, ?ejka J. Chem. Cat. Chem., 2014, 6 (7): 1919.
[33] Roth W J, Nachtigall P, Morris R E, Cejka J. Chem. Rev., 2014, 114 (9): 4807.
[34] Moller K, Bein T. Science, 2011, 333 (6040): 297.
[35] Verboekend D, Perez-Ramirez J. Catal. Sci. Technol., 2011, 1 (6): 879.
[36] Egeblad K, Christensen C H, Kustova M, Christensen C H. Chem. Mater., 2008, 20 (3): 946.
[37] Liu B, Duan Q, Li C, Zhu Z, Xi H, Qian Y. New J. Chem., 2014, 38 (9): 4380.
[38] Kresge C, Leonowicz M, Roth W, Vartuli J, Beck J. Nature, 1992, 359 (6397): 710.
[39] Li Z H. Chinese Physics C, 2013, (10): 110.
[40] Corma A, García H. Chem. Rev., 2003, 103 (11): 4307.
[41] Wu L, Magusin P C M M, Degirmenci V, Li M, Almutairi S M T, Zhu X, Mezari B, Hensen E J M. Microporous Mesoporous Mater., 2014, 189: 144.
[42] Liu D, Zhang X, Bhan A, Tsapatsis M. Microporous Mesoporous Mater., 2014, 200: 287.
[43] Seo Y, Cho K, Jung Y, Ryoo R. ACS Catal., 2013, 3 (4): 713.
[44] Bai P, Olson D H, Tsapatsis M, Siepmann J I. Chemphyschem., 2014, 15 (11): 2225.
[45] Kim J C, Cho K, Ryoo R. Appl. Catal. A, 2014, 470: 420.
[46] Lee H W, Park S H, Jeon J K, Ryoo R, Kim W, Suh D J, Park Y K. Catal. Today, 2014, 232: 119.
[47] Luo H Y, Bui L, Gunther W R, Min E, Román-Leshkov Y. ACS Catal., 2012, 2 (12): 2695.
[48] Wu Y, Emdadi L, Wang Z, Fan W, Liu D. Appl. Catal. A, 2014, 470: 344.
[49] Kim J, Choi M, Ryoo R. J. Catal., 2010, 269 (1): 219.
[50] Kim W, Ryoo R. Catal. Lett., 2014, 144 (7): 1164.
[51] Bleken B T L, Wragg D S, Arstad B, Gunns A E, Mouzon J, Helveg S, Lundegaard L F, Beato P, Bordiga S, Olsbye U, Svelle S, Lillerud K P. Top. Catal., 2013, 56 (9/10): 558.
[52] Hu S, Shan J, Zhang Q, Wang Y, Liu Y, Gong Y, Wu Z, Dou T. Appl. Catal. A, 2012, 445/446: 215.
[53] 张少龙(Zhang S L), 张兰兰(Zhang L L), 王务刚(Wang W W), 闵媛媛(Min Y Y), 马通(Ma T), 宋宇(Song Y), 巩雁军(Gong Y J), 窦涛(Dou T). 物理化学学报(Acta Phys. Chim. Sin.), 2014, (03): 535.
[54] Izumi Y, Ichihashi H, Shimazu Y, Kitamura M, Sato H. Bull. Chem. Soc. Jpn., 2007, 80 (7): 1280.
[55] Takahashi T, Nasution M N A, Kai T. Appl. Catal. A, 2001, 210 (1/2): 339.
[56] 慕旭宏(Mu X H), 王殿中(Wang D Z), 王永睿(Wang Y R), 林民(Lin M), 程时标(Cheng S B), 舒兴田(Shu X T).催化学报(Chinese Journal of Catalysis), 2013, (01): 69.
[57] Kim J, Park W, Ryoo R. ACS Catal., 2011, 1 (4): 337.
[58] Verheyen E, Jo C, Kurttepeli M, Vanbutsele G, Gobechiya E, Korányi T I, Bals S, Van Tendeloo G, Ryoo R, Kirschhock C E A, Martens J A. J. Catal., 2013, 300: 70.
[59] Feng S, Pei S, Yue B, Ye L, Qian L, He H. Catal. Lett., 2009, 131 (3/4): 458.
[60] Koekkoek A J J, Kim W, Degirmenci V, Xin H, Ryoo R, Hensen E J M. J. Catal., 2013, 299: 81.
[61] Hensen E J M, Zhu Q, Janssen R A J, Magusin P C M M, Kooyman P J, van Santen R A. J. Catal., 2005, 233 (1): 123.
[62] Na K, Jo C, Kim J, Ahn W S, Ryoo R. ACS Catal., 2011, 1 (8): 901.
[63] Notari B. Adv. Catal., 1996, 41: 253.
[64] Varoon K, Zhang X Y, Elyassi B, Brewer D D, Gettel M, Kumar S, Lee J A, Maheshwari S, Mittal A, Sung C Y, Cococcioni M, Francis L F, McCormick A V, Mkhoyan K A, Tsapatsis M. Science, 2011, 334 (6052): 72.
[65] Rodenas T, Luz I, Prieto G, Seoane B, Miro H, Corma A, Kapteijn F, Llabres i Xamena F X, Gascon J. Nat Mater., 2015, 14 (1): 48.
[66] Peng Y, Li Y S, Ban Y J, Jin H, Jiao W M, Liu X L, Yang W S. Science, 2014, 346 (6215): 1356.
[1] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[2] Xiuli Shao, Siqi Wang, Xuan Zhang, Jun Li, Ningning Wang, Zheng Wang, Zhongyong Yuan. Fabrication and Application of MFI Zeolite Nanosheets [J]. Progress in Chemistry, 2022, 34(12): 2651-2666.
[3] Wenqiao Liu, Zhen Li, Chungu Xia. Preparation and Application of Acidic Ionic Liquid Hybrid Solid Catalytic Materials [J]. Progress in Chemistry, 2018, 30(8): 1143-1160.
[4] Ming Ge, Zhenlu Li. All-Solid-State Z-Scheme Photocatalytic Systems Based on Silver-Containing Semiconductor Materials [J]. Progress in Chemistry, 2017, 29(8): 846-858.
[5] Pengyuan Wang, Changsheng Guo, Jianfeng Gao, Jian Xu. Preparation of Graphite Phase C3N4 and Bismuth Based Composite Photocatalyst and Its Environmental Application [J]. Progress in Chemistry, 2017, 29(2/3): 241-251.
[6] Xiang Lei, Sun Teng-Fei, Mo Ce-Hui, Li Yan-Wen, Cai Quan-Ying, Li Hui. Related Environmental Problems and Research Progresses of Quaternary Ammonium Compounds (QACs) [J]. Progress in Chemistry, 2016, 28(5): 727-736.
[7] Zhao Xinhong, Gao Xiangping, Hao Zhixin, Zhang Xiaoxiao. Synthesis, Characterization and Catalytic Applications of Hierarchically Porous Aluminophosphate Molecular Sieves [J]. Progress in Chemistry, 2016, 28(5): 686-696.
[8] Chen Yanping, Cheng Dang-guo, Chen Fengqiu, Zhan Xiaoli. NO Decomposition and Selective Catalytic Reduction of NO over Cu-ZSM-5 Zeolite [J]. Progress in Chemistry, 2014, 26(0203): 248-258.
[9] Shi Jianwen, Chen Shaohua, Cui Haojie, Fu Minglai. Two-Dimensional Titania Nanosheets [J]. Progress in Chemistry, 2012, 24(0203): 294-303.
[10] Yue Cheng1,2, Jiansheng Li 2,Lianjun Wang2**, Xiuyun Sun2 ,. Research Progress of ZSM-5 Zeolite Membranes [J]. Progress in Chemistry, 2006, 18(0203): 221-229.