中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (9): 1313-1323 DOI: 10.7536/PC150145 Previous Articles   Next Articles

• Review and comments •

Flexible Field Emission Cathode Materials

Chen Shanliang1,2, Ying Pengzhan1, Wei Guodong2, Yang Weiyou2*   

  1. 1. School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China;
    2. School of Materials, Ningbo University of Technology, Ningbo 315016, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.51372123).
PDF ( 898 ) Cited
Export

EndNote

Ris

BibTeX

The flexible field emission cathode materials, with the unique advancements of deformability and bendability, have wide potential applications in the fields of electronic textiles, distributed sensors, paper displays and the large bending displays on building surface. Thus, the investigation on the flexible device systems, based on the semiconductor nanostructures with both high flexibility and excellent performance, becomes one of the hot research topics currently. In the present review, we firstly provide a brief introduction to the major features of the flexible field emission cathode materials. Then we make a comprehensive review on the research progresses focused on the fabrications of the flexible field emission cathode materials grown on the typical substrates of polymers, graphenes and carbon fabrics. Subsequently, we shed some lights on the potential applications of the flexible cathodes in the field emission displays and X-ray tubes. Finally, the future development directions of the flexible field emission cathode materials are prospected.

Contents
1 Introduction
2 The characteristics of flexible field emission cathode
2.1 Bendability
2.2 Ductility
3 Preparation and properties of flexible field emission cathode materials
3.1 Flexible polymer
3.2 Graphene
3.3 Carbon cloth
4 The applications of flexible cathode
4.1 Field emission display
4.2 X-ray tube
5 Conclusion and outlook

CLC Number: 

[1] Fowler R H, Nordheim L. Proc. R. Soc. London, Ser A, 1928, 781: 173.
[2] Hwang J O, Lee D H, Kim J Y, Han T H, Kim B H, Park M, No K, Kim S O. J. Mater. Chem., 2011, 10: 3432.
[3] She J, Xiao Z, Yang Y, Deng S, Chen J, Yang G, Xu N. ACS Nano, 2008, 10: 2015.
[4] Zhang X, Chen Y, Xie Z, Yang W. J. Phys. Chem. C, 2010, 18: 8251.
[5] Deng J, Zheng R, Yang Y, Zhao Y, Cheng G. Carbon, 2012, 50 (12): 4732.
[6] Lee D H, Lee J A, Lee W J, Choi D S, Lee W J, Kim S O. J. Phys. Chem. C, 2010, 49: 21184.
[7] Lee D H, Lee J A, Lee W J, Kim S O. Small, 2011, 1: 95.
[8] Wu Z, Pei S, Ren W, Tang D, Gao L, Liu B, Li F, Liu C, Cheng H. Adv. Mater., 2009, 17: 1756.
[9] Huang C K, Ou Y, Bie Y, Zhao Q, Yu D. Appl. Phys. Lett., 2011, 98: 263104.
[10] Wei G, Liu H, Shi C, Gao F, Zheng J, Wei G, Yang W. J. Phys. Chem. C, 2011, 26: 13063.
[11] Song X, Guo Z, Zheng J, Li X, Pu Y. Nanotechnology, 2008, 11: 115609.
[12] Huang A, Chu P K, Wu X. Appl. Phys. Lett., 2006, 25: 251103.
[13] Fang X, Zhai T, Gautam U K, Li L, Wu L, Bando Y, Golberg D. Prog. Mater. Sci., 2011, 2: 175.
[14] Chen Z, Cheng L, Xu H, Liu J, Zou J, Sekiguchi T, Lu G Q M, Cheng H. Adv. Mater., 2010, 21: 2376.
[15] Liu P, Wei Y, Liu K, Liu L, Jiang K, Fan S. Nano Lett. 2012, 5: 2391.
[16] Kim D H, Kim C D, Lee H R. Carbon, 2004, 8: 1807.
[17] Heo S H, Ihsan A, Cho S O. Appl. Phys. Lett., 2007, 18: 183109.
[18] Zhang Y, Lau S, Huang L, Tanemura M. Appl. Phys. Lett. 2005, 12: 123115.
[19] De Jonge N, Lamy Y, Schoots K, Oosterkamp T H. Nature, 2002, 6914: 393.
[20] Lee S, Im W B, Kang J H, Jeon D Y. J. Vac. Sci. Technol. B 2005, 2: 745.
[21] Jeong H J, Jeong H D, Kim H Y, Kim S H, Kim J S, Jeong S Y, Han J T, Lee G. Small, 2012, 2: 272.
[22] Kim K S, Zhao Y, Jang H, Lee S. Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, Hong B H. Nature, 2009, 7230: 706.
[23] Lahiri I, Verma V P, Choi W. Carbon, 2011, 5: 1614.
[24] Tan T, Sim H, Lau S, Yang H, Tanemura M, Tanaka J. Appl. Phys. Lett., 2006, 10: 103105.
[25] Wu R, Zhou K, Wei J, Huang Y, Su F, Chen J, Wang L. J. Phys. Chem. C, 2012, 23: 12940.
[26] Baby T T, Ramaprabhu S. Appl. Phys. Lett., 2011, 18:183111.
[27] Chen S, Ying P, Wang L, Wei G, Zheng J, Gao F, Su S, Yang W. J. Mater. Chem. C, 2013, 1: 4779.
[28] Tsai T, Lee C, Tai N, Tuan W. Appl. Phys. Lett., 2009, 1: 013107.
[29] Lee D H, Kim J E, Han T H, Hwang J W, Jeon S, Choi S, Hong S H, Lee W J, Ruoff R S, Kim S O. Adv. Mater., 2010, 11: 1247.
[30] Hirakawa H, Ishimoto M, Awamoto K, Shinoda T. J. Display Technol., 2010, 9: 381.
[31] Das S, Seelaboyina R, Verma V, Lahiri I, Hwang J Y, Banerjee R, Choi W. J. Mater. Chem., 2011, 20: 7289.
[32] Zeng H, Xu X, Bando Y, Gautam U K, Zhai T, Fang X, Liu B, Golberg D. Adv. Funct. Mater., 2009, 19: 3165.
[33] Wang X, Zhou J, Lao C, Song J, Xu N, Wang Z L. Adv. Mater., 2007, 12: 1627.
[34] Liu N, Fang G, Zeng W, Zhou H, Long H, Zhao X. J. Mater. Chem., 2012, 8: 3478.
[35] Sim H, Lau S, Yang H, Ang L, Tanemura M, Yamaguchi K. Appl. Phys. Lett., 2007, 14: 143103.
[36] Jung Y J, Kar S, Talapatra S, Soldano C, Viswanathan G, Li X, Yao Z, Ou F S, Avadhanula A, Vajtai R. Nano Lett., 2006, 3: 413.
[37] Dikin D A, Stankovich S, Zimney E J, Piner R D, Dommett G H, Evmenenko G, Nguyen S T, Ruoff R S. Nature, 2007, 7152: 457.
[38] Park S, Lee K, Bozoklu G, Cai W, Nguyen S T, Ruoff R S. ACS Nano, 2008, 3: 572.
[39] Jeong H J, Jeong H D, Kim H Y, Kim J S, Jeong S Y, Han J T, Bang D S, Lee G W. Adv. Funct. Mater., 2011, 8: 1526.
[40] Stratakis E, Kymakis E, Spanakis E, Tzanetakis P, Koudoumas E. Phys. Chem. Chem. Phys., 2009, 4: 703.
[41] Hallam T, Cole M T, Milne W I, Duesberg G S. Small, 2014, 1: 95.
[42] Yang H, Lau S, Yu S, Huang L, Tanemura M, Tanaka J, Okita T, Hng H. Nanotechnology, 2005, 8: 1300.
[43] Lee Y D, Lee H J, Han J H, Yoo J E, Lee Y, Kim J K, Nahm S, Ju B. J. Phys. Chem. B, 2006, 11: 5310.
[44] Ghosh P, Yusop M Z, Satoh S, Subramanian M, Hayashi A, Hayashi Y, Tanemura M. J. Am. Chem. Soc.,2010, 12: 4034.
[45] Hofmann S, Ducati C, Kleinsorge B, Robertson J. Appl. Phys. Lett., 2003, 22: 4661.
[46] Ghosh D, Ghosh P, Tanemura M, Haysahi A, Hayashi Y, Shinji K, Miura N, Yusop M Z, Asaka T. Chem. Commun., 2011, 17: 4980.
[47] Hsu C L, Su C W, Hsueh T J. RSC Adv., 2014, 6: 3043.
[48] Pradhan D, Kumar M, Ando Y, Leung K T J. Phys. Chem. C, 2008, 18: 7093.
[49] Cui J, Daghlian C, Gibson U, Pusche R, Geithner P, Ley L. J. Appl. Phys., 2005, 4: 044315.
[50] Nasibulin A G, Ollikainen A, Anisimov A S, Brown D P, Pikhitsa P V, Holopainen S, Penttil J S, Helist P, Ruokolainen J, Choi M. Chem. Eng. J., 2008, 2: 409.
[51] Yoon B J, Hong E H, Jee S E, Yoon D M, Shim D S, Son G Y, Lee Y J, Lee K H, Kim H S, Park C G. J. Am. Chem. Soc., 2005, 23: 8234.
[52] Hong N T, Yim J H, Koh K H, Lee S, Minh P N, Khoi P H. J. Vac. Sci. Technol. B, 2008, 2: 778.
[53] Chang-Jian S, Ho J, Cheng J. Solid State Commun., 2010, 13: 666.
[54] Song C, Yu K, Yin H, Fu H, Zhang Z, Zhang N, Zhu Z. J. Mater. Chem. C, 2014, 21: 4196.
[55] Wang C, Chen T, Chang S, Chin T, Cheng S. Appl. Phys. Lett., 2007, 10: 103111.
[56] Yaglioglu O, Martens R, Hart A. J, Slocum A H. Adv. Mater., 2008, 2: 357.
[57] Zhu L, Sun Y, Hess D W, Wong C P. Nano Lett., 2006, 2: 243.
[58] Kang S J, Kocabas C, Kim H S, Cao Q, Meitl M. A, Khang D Y, Rogers J A. Nano Lett., 2007, 11: 3343.
[59] Goswami S, Maiti U, Maiti S, Nandy S, Mitra M, Chattopadhyay K. Carbon, 2011, 7: 2245.
[60] Choi W M, Shin K S, Lee H S, Choi D, Kim K, Shin H J, Yoon S M, Choi J Y, Kim S W. Nano Res., 2011, 5: 440.
[61] Lock E H, Baraket M, Laskoski M, Mulvaney S P, Lee W K, Sheehan P E, Hines D R, Robinson J T, Tosado J, Fuhrer M S. Nano Lett., 2011, 1: 102.
[62] Nguyen D D, Tai N H, Chen S Y, Chueh Y L. Nanoscale, 2012, 2: 632.
[63] Verma V P, Das S, Lahiri I, Choi W. Appl. Phys. Lett., 2010, 20: 203108.
[64] Srivastava A, Galande C, Ci L, Song L, Rai C, Jariwala D, Kelly K F, Ajayan P M. Chem. Mater., 2010, 11: 3457.
[65] Bae S, Kim H, Lee Y, Xu X, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y I. Nat. Nanotech., 2010, 8: 574.
[66] Arif M, Heo K, Lee B. Y, Lee J, Seo D H, Seo S, Jian J, Hong S. Nanotechnology, 2011, 35: 355709.
[67] Zhang X, Gong L, Liu K, Cao Y, Xiao X, Sun W, Hu X, Gao Y, Chen J, Zhou J. Adv. Mater., 2010, 46: 5292.
[68] Yuan L, Tao Y, Chen J, Dai J, Song T, Ruan M, Ma Z, Gong L, Liu K, Zhang X. Adv. Funct. Mater., 2011, 11: 2150.
[69] Maiti U, Maiti S, Thapa R, Chattopadhyay K. Nanotechnology, 2010, 50: 505701.
[70] Das S, Saha S, Sen D, Ghorai U K, Banerjee D, Chattopadhyay K K. J. Mater. Chem. C, 2014, 7: 1321.
[71] Chen S, Ying P, Wang L, Gao F, Wei G, Zheng J, Xie Z, Yang W. RSC Adv., 2014, 16: 8376.
[72] Chen S, Ying P, Wang L, Wei G, Yang W. Appl. Phys. Lett., 2014, 13: 133106.
[73] Cheng T C. Mater. Chem. Phys., 2012, 136: 140.
[74] Chuang F T, Chen P, Cheng T, Chien C, Li B. Nanotechnology, 2007, 39: 395702.
[75] Lyth S, Hatton R, Silva S. Appl. Phys. Lett., 2007, 1: 013120.
[76] Zhang X, Chen Y, Liu W, Xue W, Li J, Xie Z. J. Mater. Chem. C, 2013, 39: 6479.
[77] Paul S, Kim D W. Carbon, 2009, 10: 2436.
[78] Ghosh D, Ghosh P, Yusop M Z, Tanemura M, Hayashi Y, Tsuchiya T, Nakajima T. Phys. Status Solidi RRL, 2012, 7: 303.
[79] Li Y K, Zhu C C, Li X H. Diam. Relat. Mater., 2002, 11: 1845.
[80] Kim S, Cho E, Han S, Cho Y, Cho S H, Kim C, Ihm J. Solid State Commun., 2009, 17: 670.
[81] Kim D H, Yang H S, Kang H D, Lee H R. Chem. Phys. Lett., 2003, 3: 439.
[82] Kuznetzov A, Lee S B, Zhang M, Baughman R H, Zakhidov A. Carbon, 2010, 1: 41.
[83] Cairns D R, Crawford G. P. P. IEEE, 2005, 8: 1451.
[84] Alzoubi K, Lu S, Sammakia B, Poliks M. J. Display Technol., 2011, 6: 348.
[85] Senda S, Sakai Y, Mizuta Y, Kita S, Okuyama F. Appl. Phys. Lett., 2004, 23: 5679.
[86] Beatty J, Biggs P, Gall K, Okunieff P, Pardo F, Harte K, Dalterio M, Sliski A. Med. Phys., 1996, 23: 53.
[87] Matsumoto T, Mimura H. Appl. Phys. Lett., 2003, 10: 1637.
[1] Qi Qi, Peizhu Xu, Zhidong Tian, Wei Sun, Yangjie Liu, Xiang Hu. Recent Advances of the Electrode Materials for Sodium-Ion Capacitors [J]. Progress in Chemistry, 2022, 34(9): 2051-2062.
[2] Jin Zhou, Pengpeng Chen. Modification of 2D Nanomaterials and Their Applications in Environment Pollution Treatment [J]. Progress in Chemistry, 2022, 34(6): 1414-1430.
[3] Xumin Wang, Shuping Li, Renjie He, Chuang Yu, Jia Xie, Shijie Cheng. Quasi-Solid-State Conversion Mechanism for Sulfur Cathodes [J]. Progress in Chemistry, 2022, 34(4): 909-925.
[4] Xiaoqiong Feng, Yunlong Ma, Hong Ning, Shiying Zhang, Changsheng An, Jinfeng Li. Transition Metal Chalcogenide Cathode Materials Applied in Aluminum-Ion Batteries [J]. Progress in Chemistry, 2022, 34(2): 319-327.
[5] Bin Li, Ying Yu, Guoxiang Xing, Jinfeng Xing, Wanxing Liu, Tianyong Zhang. Progress in Circularly Polarized Light Emission of Chiral Inorganic Nanomaterials [J]. Progress in Chemistry, 2022, 34(11): 2340-2350.
[6] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.
[7] Chenyang Qi, Jing Tu. Antibiotic-Free Nanomaterial-Based Antibacterial Agents:Current Status, Challenges and Perspectives [J]. Progress in Chemistry, 2022, 34(11): 2540-2560.
[8] Jiali Wang, Ling Zhu, Chen Wang, Shengbin Lei, Yanlian Yang. Nanotechnology for Detection of Circulating Tumor Cells and Extracellular Vesicles [J]. Progress in Chemistry, 2022, 34(1): 178-197.
[9] Kedi Cai, Shuang Yan, Tianye Xu, Xiaoshi Lang, Zhenhua Wang. Investigation of Electrode Materials for Lithium Ion Capacitor Battery [J]. Progress in Chemistry, 2021, 33(8): 1404-1413.
[10] Yong Xie, Mingjie Han, Yuhao Xu, Chenyu Xiong, Ri Wang, Shanhong Xia. Inner Filter Effect for Environmental Monitoring [J]. Progress in Chemistry, 2021, 33(8): 1450-1460.
[11] Yusen Ding, Pu Zhang, Hong Li, Wenhuan Zhu, Hao Wei. Research Status and Prospect of Li-Se Batteries [J]. Progress in Chemistry, 2021, 33(4): 610-632.
[12] Shihao Zhou, Xianwen Wu, Yanhong Xiang, Ling Zhu, Zhixiong Liu, Caixian Zhao. Manganese-Based Cathode Materials for Aqueous Zinc Ion Batteries [J]. Progress in Chemistry, 2021, 33(4): 649-669.
[13] Sha Tan, Jianzhong Ma, Yan Zong. Preparation and Application of Poly(3,4-ethylenedioxythiophene)∶Poly(4-styrenesulfonate)/Inorganic Nanocomposites [J]. Progress in Chemistry, 2021, 33(10): 1841-1855.
[14] Mengting Xu, Yanqing Wang, Ya Mao, Jingjuan Li, Zhidong Jiang, Xianxia Yuan. Cathode Catalysts for Non-Aqueous Lithium-Air Batteries [J]. Progress in Chemistry, 2021, 33(10): 1679-1692.
[15] Qiao Jiang, Xuehui Xu, Baoquan Ding. Regulation of Condensed States of Biological Macromolecules by Rationally Designed Nanomaterials [J]. Progress in Chemistry, 2020, 32(8): 1128-1139.
Viewed
Full text


Abstract

Flexible Field Emission Cathode Materials