中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (9): 1230-1239 DOI: 10.7536/PC150138 Previous Articles   Next Articles

• Review and comments •

Ionics Fluorescent Chemsensor Based on Pyrene

Zhong Keli1, Guo Baofeng1, Zhou Xue1, Cai Kedi1, Tang Lijun1*, Jin Longyi2*   

  1. 1. College of Chemistry, Chemical Engineering and Food Safety, Bohai University, Food Safety Key Lab of Liaoning Province, Jinzhou 121013, China;
    2. Key Laboratory for Organism Resources of the Changbai Mountain and Functional Molecules, Ministry of Education, Department of Chemistry, College of Science, Yanbian University, Yanji 133002, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work is supported by the National Natural Science Foundation of China (No.21304009,21476029,21176029,21164013), the Program for Liaoning Excellent Talents in University (No.LJQ2014125,LR2015001), the National Key Technologies R&D Program of China during the 12th Five-Year Plan Period(No. 2012BAD29B06), and the Food Safety Key Laboratory of Liaoning Province (No. LNSAKF2011025).
PDF ( 1429 ) Cited
Export

EndNote

Ris

BibTeX

Pyrene is a simple aromatic molecule, and it can easily form dynamic and static excimer in solution, which shows long wavelength fluorescence emission. Owing to the different fluorescence emission wavelengths of pyrene monomer and excimer, pyrene is often used as fluorophore for the synthesis of various fluorescent sensors. The progress of pyrene-based fluorescent chemosensors, including the molecular design, mechanism and their application to single-cation, dication as well as anion recognition are summarized. The developing prospect of this type of fluorescent chemosensor is envisaged in this review.

Contents
1 Introduction
2 Fluorescence sensors for single-cation
2.1 Fluorescent sensors for Hg2+ 2.2 Fluorescent sensors for Cu2+ 2.3 Fluorescent sensors for Zn2+ 2.4 Fluorescent sensors for Ag+ 2.5 Fluorescent sensors for other single-cation 3 Fluorescence sensors for dication
3.1 Fluorescent sensors for Hg2+,Cu2+ 3.2 Fluorescent sensors for Hg2+,Pb2+ 3.3 Fluorescent sensors for other dication
4 Fluorescent sensors for anion
5 Conclusion

CLC Number: 

[1] Santos-Figueroa L E, Moragues M E, Climent E, Agostini A, Martínez-Máñez R, Sancenón F. Chem. Soc. Rev., 2013, 42(8): 3489.
[2] Li X, Gao X, Shi W, Ma H. Chem. Rev., 2014, 114(1): 590.
[3] Vendrell M, Zhai D, Er J C, Chang Y T. Chem. Rev., 2012, 112(8): 4391.
[4] Wenzel M, Hiscock J R, Gale P A. Chem. Soc. Rev., 2012, 41(1): 480.
[5] 王红(Wang H), 张华山(Zhang H S). 化学进展(Progress in Chemistry), 2007, 19(5): 633.
[6] Formica M, Fusi V, Giorgi L, Micheloni M. Coord. Chem. Rev., 2012, 256(1/2): 170.
[7] 钱小红(Qian X H), 金灿(Jin Can), 张晓宁(Zhang X N), 姜艳(Jiang Y), 林晨(Lin C), 王乐勇(Wang L Y). 化学进展(Progress in Chemistry), 2014, 26(10): 1701.
[8] Chen X, Zhou G, Peng X, Yoon J. Chem. Soc. Rev., 2012, 41(13): 4610.
[9] Chen X, Pradhan T, Wang F, Kim J S, Yoon J. Chem. Rev., 2012, 112(3): 1910.
[10] Zhong K, Zhou X, Hou R, Zhou P, Hou S, Bian Y, Zhang G, Tang L, Shang X. RSC Adv., 2014, 4(32): 16612.
[11] Lau Y H, Rutledge P J, Watkinson M, Todd M H. Chem. Soc. Rev., 2011, 40(5): 2848.
[12] Kim H N, Guo Z, Zhu W, Yoon J, Tian H. Chem. Soc. Rev., 2011, 40(1): 79.
[13] Zhang J F, Zhou Y, Yoon J, Kim J S. Chem. Soc. Rev., 2011, 40(7): 3416.
[14] Xu Z, Yoon J, Spring D R. Chem. Soc. Rev., 2010, 39(6): 1996.
[15] Kim J S, Choi M G, Song K C, No K T, Ahn S, Chang S K. Org. Lett., 2007, 9(6): 1129.
[16] Zhou Y, Zhu C Y, Gao X S, You X Y, Yao C. Org. Lett., 2010, 12(11): 2566.
[17] Ahamed B N, Ghosh P. Inorg. Chim. Acta, 2011, 372(1): 100.
[18] Sola A, Otón F, Espinosa A, Tárraga A, Molina P. Dalton Trans., 2011, 40(46): 12548.
[19] Yang M H, Thirupathi P, Lee K H. Org. Lett., 2011, 13(19): 5028.
[20] Sivaraman G, Anand T, Chellappa D. RSC Adv., 2012, 2(28): 10605.
[21] Wang H F, Wu S P. Tetrahedron, 2013, 69(8): 1965.
[22] Chen L, Zheng B, Guo Y, Du J, Xiao D, Bo L. Talanta, 2013, 117: 338.
[23] Xie J, Ménand M, Maisonneuve S, Métivier R. J. Org. Chem., 2007, 72(16): 5980.
[24] Jung H S, Park M, Han D Y, Kim E, Lee C, Ham S, Kim J S. Org. Lett., 2009, 11(15): 3378.
[25] Zhou Y, Wang F, Kim Y, Kim S J, Yoon J. Org. Lett., 2009, 11(19): 4442.
[26] Wu S P, Huang Z M, Liu S R, Chung P K. J. Fluoresc., 2012, 22(1): 253.
[27] Fernández-Lodeiro J, Nuúñez C, de Castro C S, Bértolo E, Seixas de Melo J S R, Capelo J L, Lodeiro C. Inorg. Chem., 2012, 52(1): 121.
[28] Li N, Xiang Y, Chen X, Tong A. Talanta, 2009, 79(2): 327.
[29] Zhou Y, Kim H N, Yoon J. Bioorg. Med. Chem. Lett., 2010, 20(1): 125.
[30] Ingale S A, Seela F. J. Org. Chem., 2012, 77(20): 9352.
[31] Choi J Y, Kim D, Yoon J. Dyes Pigm., 2013, 96(1): 176.
[32] Yang R H, Chan W H, Lee A W, Xia P F, Zhang H K, Ani K. J. Am. Chem. Soc., 2003, 125(10): 2884.
[33] Liu L, Zhang D, Zhang G, Xiang J, Zhu D. Org. Lett., 2008, 10(11): 2271.
[34] Pandey M D, Mishra A K, Chandrasekhar V, Verma S. Inorg. Chem., 2010, 49(5): 2020.
[35] Jang S, Thirupathi P, Neupane L N, Seong J, Lee H, Lee W I, Lee K H. Org. Lett., 2012, 14(18): 4746.
[36] Wang F, Nandhakumar R, Moon J H, Kim K M, Lee J Y, Yoon J. Inorg. Chem., 2011, 50(6): 2240.
[37] Sahana A, Banerjee A, Lohar S, Guha S, Das S, Mukhopadhyay S K, Das D. Analyst, 2012, 137(17): 3910.
[38] Thakur A, Mandal D, Ghosh S. Anal. Chem., 2013, 85(3): 1665.
[39] Jing L, Liang C, Shi X, Ye S, Xian Y. Analyst, 2012, 137(7): 1718.
[40] Chung P K, Liu S R, Wang H F, Wu S P. J. Fluoresc., 2013, 23(6): 1139.
[41] Das S, Sahana A, Banerjee A, Lohar S, Safin D A, Babashkina M G, Bolte M, Garcia Y, Hauli I, Mukhopadhyay S K. Dalton Trans., 2013, 42(14): 4757.
[42] Nath S, Maitra U. Org. Lett., 2006, 8(15): 3239.
[43] Martínez R, Espinosa A, Tárraga A, Molina P. Org. Lett., 2005, 7(26): 5869.
[44] Martínez R, Zapata F, Caballero A, Espinosa A, Tárraga A, Molina P. Org. Lett., 2006, 8(15): 3235.
[45] Martínez R, Espinosa A, Tárraga A, Molina P. Tetrahedron, 2010, 66(21): 3662.
[46] Lee M H, Kang G, Kim J W, Ham S, Kim J S. Supramol. Chem., 2009, 21(1/2): 135.
[47] Cao Y, Ding L, Hu W, Wang L, Fang Y. Appl. Surf. Sci., 2013, 273: 542.
[48] Kumari N, Dey N, Jha S, Bhattacharya S. ACS Appl. Mat. Interfaces, 2013, 5(7): 2438.
[49] Neupane L N, Park J Y, Park J H, Lee K H. Org. Lett., 2013, 15(2): 254.
[50] Otón F, González M A D C, Espinosa A, Ramírez de Arellano C, Tárraga A, Molina P. J. Org. Chem., 2012, 77(22): 10083.
[51] Kim J S, Shon O J, Rim J A, Kim S K, Yoon J. J. Org. Chem., 2002, 67(7): 2348.
[52] Park S Y, Yoon J H, Hong C S, Souane R, Kim J S, Matthews S E, Vicens J. J. Org. Chem., 2008, 73(21): 8212.
[53] Cho J, Pradhan T, Kim J S, Kim S. Org. Lett., 2013, 15(16): 4058.
[54] Yuasa H, Miyagawa N, Izumi T, Nakatani M, Izumi M, Hashimoto H. Org. Lett., 2004, 6(9): 1489.
[55] Hung H C, Cheng C W, Wang Y Y, Chen Y J, Chung W S. Eur. J. Org. Chem., 2009, 2009(36): 6360.
[56] Sun X, Wang Y W, Peng Y. Org. Lett., 2012, 14(13): 3420.
[57] Kim S K, Bok J H, Bartsch R A, Lee J Y, Kim J S. Org. Lett., 2005, 7(22): 4839.
[58] Gai L, Chen H, Zou B, Lu H, Lai G, Li Z, Shen Z. Chem. Commun., 2012, 48(87): 10721.
[59] Schazmann B, Alhashimy N, Diamond D. J. Am. Chem. Soc., 2006, 128(26): 8607.
[60] Suzuki I, Ui M, Yamauchi A. J. Am. Chem. Soc., 2006, 128(14): 4498.
[1] Ruyue Cao, Jingjing Xiao, Yixuan Wang, Xiangyu Li, Anchao Feng, Liqun Zang. Cascade RAFT Polymerization of Hetero Diels-Alder Cycloaddition Reaction [J]. Progress in Chemistry, 2023, 35(5): 721-734.
[2] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[3] Shuyang Yu, Wenlei Luo, Jingying Xie, Ya Mao, Chao Xu. Review on Mechanism and Model of Heat Release and Safety Modification Technology of Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(4): 620-642.
[4] Xuedan Qian, Weijiang Yu, Junzhe Fu, Youxiang Wang, Jian Ji. Fabrication and Biomedical Application of Hyaluronic Acid Based Micro- and Nanogels [J]. Progress in Chemistry, 2023, 35(4): 519-525.
[5] Xuexian Wu, Yan Zhang, Chunyi Ye, Zhibin Zhang, Jingli Luo, Xianzhu Fu. Surface Pretreatment of Polymer Electroless Plating for Electronic Applications [J]. Progress in Chemistry, 2023, 35(2): 233-246.
[6] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[7] Xu Zhang, Lei Zhang, Shanen Huang, Zhifang Chai, Weiqun Shi. Preparation of Salt-Inclusion Materials in High-Temperature Molten Salt System and Their Potential Application [J]. Progress in Chemistry, 2022, 34(9): 1947-1956.
[8] Yehjun Lim, Yanmei Li. Chemical Synthesis/Semisynthesis of Post-Translational Modified Tau Protein [J]. Progress in Chemistry, 2022, 34(8): 1645-1660.
[9] Yizhou Yang, Bingquan Peng, Xiaoling Lei, Haiping Fang. Aromatic Rings in Ion Soultions: Two-Dimensional Crystals of Unconventional Stoichiometries and Ferromagnetism [J]. Progress in Chemistry, 2022, 34(7): 1524-1536.
[10] Shuaiwei Peng, Zhuofu Tang, Bing Lei, Zhiyuan Feng, Honglei Guo, Guozhe Meng. Design and Application of Bionic Surface for Directional Liquid Transportation [J]. Progress in Chemistry, 2022, 34(6): 1321-1336.
[11] Jin Zhou, Pengpeng Chen. Modification of 2D Nanomaterials and Their Applications in Environment Pollution Treatment [J]. Progress in Chemistry, 2022, 34(6): 1414-1430.
[12] Xuanshu Zhong, Zongjian Liu, Xue Geng, Lin Ye, Zengguo Feng, Jianing Xi. Regulating Cell Adhesion by Material Surface Properties [J]. Progress in Chemistry, 2022, 34(5): 1153-1165.
[13] Yi Zeng, Yongsheng Ren, Wenhui Ma, Hui Chen, Shu Zhan, Jing Cao. Boron Removal Method, Technology and Process for Producing Solar Grade Silicon by Metallurgical Method [J]. Progress in Chemistry, 2022, 34(4): 926-949.
[14] Jiahui Ma, Wei Yuan, Simin Liu, Zhiyong Zhao. Self-Assembly of Small Molecule Modified DNA and Their Application in Biomedicine [J]. Progress in Chemistry, 2022, 34(4): 837-845.
[15] Yan Xu, Chungang Yuan. Preparation, Stabilization and Applications of Nano-Zero-Valent Iron Composites in Water Treatment [J]. Progress in Chemistry, 2022, 34(3): 717-742.