中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (8): 1014-1024 DOI: 10.7536/PC150135 Previous Articles   Next Articles

Advances in Porous Organic-Inorganic Composite Membranes

Yang Haocheng, Chen Yifu, Ye Chen, Wan Lingshu, Xu Zhikang*   

  1. Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the Doctoral Scientific Fund Project of the Ministry of Education of China (No. 20120101110123) and the National Undergraducate Scientific and Technological Innovation Project(No. 20141033509412).
PDF ( 883 ) Cited
Export

EndNote

Ris

BibTeX

Over the past decades, much attention has been paid to develope novel approaches towards water treatment, in particular the membrane filtration, to deal with the severe environmental crisis. One of the research foci is the organic-inorganic composite membranes for their advantages from both polymers and inorganics. In this review, we focus on the composite porous membranes and outline the advances in this field. In recent years, numerous of methods have been developed to fabricate such membranes, including blending, in situ generation, surface modification, atomic layer deposition, and biomineralization. The membranes can be categorized into two models according to the distribution of inorganics in the membrane: the embedding model and enveloping model. In addition, we summarize the practical applications of organic-inorganic composite membranes in anti-fouling and anti-bacterial uses, oil/water separation, catalysis, absorption, battery separator and enzyme immobilization. We suggest the “enveloping model” a better choice to construct the novel organic-inorganic composite membranes with high performance for its high surface mineral coverage.

Contents
1 Introduction
2 Types and fabrication methods
2.1 “Embedding” model
2.2 “Enveloping” model
2.3 Comparison of two models
3 Applications of organic-inorganic porous membranes
3.1 Anti-fouling and anti-bacterial applications
3.2 Oil/water separation
3.3 Catalytic membranes
3.4 Absorption
3.5 Battery separator
3.6 Immobilization of enzymes
4 Conclusion and outlook

CLC Number: 

[1] Shannon M A, Bohn P W, Elimelech M, Georgiadis J G, Marinas B J, Mayes A M. Nature, 2008, 452: 301.
[2] Wan L S, Liu Z M, Xu Z K. Soft Matter, 2009, 5: 1775.
[3] Kumar P, Guliants V V. Micropor. Mesopor. Mat., 2010, 132: 1.
[4] Le-Clech P, Chen V, Fane T A G. J. Membr. Sci., 2006, 284: 17.
[5] Meng F, Chae S R, Drews A, Kraume M, Shin H-S, Yang F. Water Res., 2009, 43: 1489.
[6] Abetz V, Brinkmann T, Dijkstra M, Ebert K, Fritsch D, Ohlrogge K, Paul D, Peinemann K V, Pereira-Nunes S, Scharnagl N, Schossig M. Adv. Eng. Mater., 2006, 8: 328.
[7] Li Y, He G, Wang S, Yu S, Pan F, Wu H, Jiang Z. J. Mater. Chem. A, 2013, 1: 10058.
[8] Yu L Y, Xu Z L, Shen H M, Yang H. J. Membr. Sci., 2009, 337: 257.
[9] Bottino A, Capannelli G, DAsti V, Piaggio P. Sep. Purif. Technol., 2001, 22/23: 269.
[10] Shen J N, Ruan H M, Wu L G, Gao C J. Chem. Eng. J., 2011, 168: 1272.
[11] Zhang G, Lu S, Zhang L, Meng Q, Shen C, Zhang J. J. Membr. Sci., 2013, 436: 163.
[12] Shi F, Ma Y, Ma J, Wang P, Sun W. J. Membr. Sci., 2012, 389: 522.
[13] Genné I, Kuypers S, Leysen R. J. Membr. Sci., 1996, 113: 343.
[14] Bottino A, Capannelli G, Comite A. Desalination, 2002, 146: 35.
[15] Yan L, Li Y S, Xiang C B, Xianda S. J. Membr. Sci., 2006, 276: 162.
[16] Wang X M, Li X Y, Shih K. J. Membr. Sci., 2011, 368: 134.
[17] Zhang J, Xu Z, Mai W, Min C, Zhou B, Shan M, Li Y, Yang C, Wang Z, Qian X. J. Mater. Chem. A, 2013, 1: 3101.
[18] Liao Y, Li X G, Heok E M V, Kaner R B. J. Mater. Chem. A, 2013,1: 15390.
[19] Wang Z, Yu H, Xia J, Zhang F, Li F, Xia Y, Li Y. Desalination, 2012, 299: 50.
[20] Wu T, Zhou B, Zhu T, Shi J, Xu Z, Hu C, Wang J. RSC Adv., 2015,5: 7880.
[21] Zhang J, Xu Z, Shan M, Zhou B, Li Y, Li B, Niu Z, Qian X. J. Membr. Sci., 2013, 448: 81.
[22] Zhu L J, Zhu L P, Jiang J H, Yi Z, Zhao Y F, Zhu B K, Xu Y Y. J. Membr. Sci., 2014, 451: 157.
[23] Zhi S H, Xu J, Deng R, Wan L S, Xu Z K. Polymer, 2014, 55: 1333.
[24] Liang H Q, Wu Q Y, Wan L S, Huang X J, Xu Z K. J. Membr. Sci., 2014, 465: 56.
[25] Chen W, Su Y, Zhang L, Shi Q, Peng J, Jiang Z. J. Membr. Sci., 2010, 348: 75.
[26] Li X, Fang X, Pang R, Li J, Sun X, Shen J, Han W, Wang L. J. Membr. Sci., 2014, 467: 226.
[27] Zhang F, Zhang W, Yu Y, Deng B, Li J, Jin J. J. Membr. Sci., 2013, 432: 25.
[28] Chen H, Lin Q, Xu Q, Yang Y, Shao Z, Wang Y. J. Membr. Sci., 2014, 458: 217.
[29] Xu Q, Yang J, Dai J, Yang Y, Chen X, Wang Y. J. Membr. Sci., 2013, 448: 215.
[30] Xu Q, Yang Y, Yang J, Wang X, Wang Z, Wang Y. J. Membr. Sci., 2013, 443: 62.
[31] Wang Q, Wang X, Wang Z, Huang J, Wang Y. J. Membr. Sci., 2013, 442: 57.
[32] Xu Q, Yang Y, Wang X, Wang Z, Jin W, Huang J, Wang Y. J. Membr. Sci., 2012, 415/416: 435.
[33] Mauter M S, Wang Y, Okemgbo K C, Osuji C O, Giannelis E P, Elimelech M. ACS Appl. Mater. Interfaces, 2011, 3: 2861.
[34] Liang S, Kang Y, Tiraferri A, Giannelis E P, Huang X, Elimelech M. ACS Appl. Mater. Interfaces, 2013, 5: 6694.
[35] You S J, Semblante G U, Lu S C, Damodar R A, Wei T C. J. Hazard. Mater., 2012, 237/238: 10.
[36] Chen P C, Wan L S, Xu Z K. J. Mater. Chem., 2012, 22: 22727.
[37] Yang H C, Pi J K, Liao K J, Huang H, Wu Q Y, Huang X J, Xu Z K. ACS Appl. Mater. Interfaces, 2014, 6: 12566.
[38] Chen X N, Wan L S, Wu Q Y, Zhi S H, Xu Z K. J. Membr. Sci., 2013, 441: 112.
[39] Zhi S H, Wan L S, Xu Z K. J. Membr. Sci., 2014, 454: 144.
[40] Hou J, Dong G, Ye Y, Chen V. J. Membr. Sci., 2014, 469: 19.
[41] Meng S, Mansouri J, Ye Y, Chen V. J. Membr. Sci., 2014, 450: 48.
[42] Shao L, Wang Z X, Zhang Y L, Jiang Z X, Liu Y Y. J. Membr. Sci., 2014, 461: 10.
[43] Méricq J P, Mendret J, Brosillon S, Faur C. Chem. Eng. Sci., 2015, 123: 283.
[44] Feng L, Zhang Z, Mai Z, Ma Y, Liu B, Jiang L, Zhu D. Angew. Chem. Int. Ed., 2004, 116: 2046.
[45] Ge J, Ye Y D, Yao H B, Zhu X, Wang X, Wu L, Wang J L, Ding H, Yong N, He L H, Yu S H. Angew. Chem. Int. Ed., 2014, 53: 3612.
[46] Zhang W, Shi Z, Zhang F, Liu X, Jin J, Jiang L. Adv. Mater., 2013, 25: 2071.
[47] Zhang F, Zhang W B, Shi Z, Wang D, Jin J, Jiang L. Adv. Mater., 2013, 25: 4192.
[48] Yang H C, Liao K J, Huang H, Wu Q Y, Wan L S, Xu Z K. J. Mater. Chem. A, 2014, 2: 10225.
[49] Xue Z, Wang S, Lin L, Chen L, Liu M, Feng L, Jiang L. Adv. Mater., 2011, 23: 4270.
[50] Zhang Y, Shang L, Tu Z, Zhang Y. Sep. Purif. Technol. 2008, 63: 207.
[51] Zhang Y, Xu Y, Zhang S, Zhang Y, Xu Z. Desalination, 2012, 299: 63.
[52] Zhang Y, Liu F, Lu Y, Zhao L, Song L. Desalination, 2013, 324: 118.
[53] Yi X S, Yu S L, Shi W X, Sun N, Jin L M, Wang S, Zhang B, Ma C, Sun L P. Desalination, 2011, 281: 179.
[54] Yuliwati E, Ismail A F, Desalination, 2011, 273: 226.
[55] Wang Z X, Lau C H, Zhang N Q, Bai Y P, Shao L. J. Mater. Chem. A, 2015, 3: 2650.
[56] Meng T, Xie R, Ju X J, Cheng C J, Wang S, Li P F, Liang B, Chu L Y. J. Membr. Sci., 2013, 427: 63.
[57] Chen P C, Xu Z K. Sci. Rep., 2013, 3.
[58] Li X, Wang M, Wang C, Cheng C, Wang X. ACS Appl. Mater. Interfaces, 2014, 6: 15272
[59] Lüdtke K, Peinemann K V, Kasche V, Behling R D. J. Membr. Sci., 1998, 151: 3.
[60] Alaoui O T, Nguyen Q T, Mbareck C, Rhlalou T. Appl. Catal. A Gen., 2009, 358: 13.
[61] Damodar R A, You S J, Chou H H. J. Hazard. Mater., 2009, 172: 1321.
[62] Leong S, Razmjou A, Wang K, Hapgood K, Zhang X. J. Membr. Sci., 2014, 472: 167.
[63] Wang J, Liu P, Fu X, Li Z, Han W, Wang X. Langmuir, 2009, 25: 1218.
[64] Chin S S, Chiang K, Fane A G. J. Membr. Sci., 2006, 275: 202.
[65] Ma S, Meng J, Li J, Zhang Y, Ni L. J. Membr. Sci., 2014, 453: 221.
[66] Vatanpour V, Madaeni S S, Moradian R, Zinadini S, Astinchap B. Sep. Purif. Technol., 2012, 90: 69.
[67] Safarpour M, Khataee A, Vatanpour V. Sep. Purif. Technol., 2012, 90: 69.
[68] Xu C, Xu Y, Zhu J. ACS Appl. Mater. Interfaces, 2014, 6: 16117.
[69] Xi F, Wu J, Lin X. J. Chromatogr. A, 2006, 1125: 38.
[70] Rotzetter A C C, Kellenberger C R, Schumacher C M, Mora C, Grass R N, Loepfe M, Luechinger N A, Stark W J. Adv. Mater., 2013, 25: 6057.
[71] Dou X, Mohan D, Pittman Jr C U, Yang S. Chem. Eng. J., 2012, 198/199: 236.
[72] Liu H, Sun X, Yin C, Hu C. J. Hazard. Mater., 2008, 151: 616.
[73] He J, Matsuura T, Chen J P. J. Membr. Sci., 2014, 452: 433.
[74] Kang S M, Ryou M H, Choi J W, Lee H. Chem. Mater., 2012, 24: 3481.
[75] Rodrigues R C, Ortiz C, Berenguer Murcia A, Torres R, Fernandez Lafuente R. Chem. Soc. Rev., 2013, 42: 6290.
[76] Cantone S, Ferrario V, Corici L, Ebert C, Fattor D, Spizzo P, Gardossi L. Chem. Soc. Rev., 2013, 42: 6262.
[77] Magner E. Chem. Soc. Rev., 2013, 42: 6213.
[78] Hou J, Dong G, Ye Y, Chen V. J. Membr. Sci., 2014, 452: 229.
[79] Wang S, Chen W, He S, Zhao Q, Li X, Sun J, Jiang X. Nanoscale, 2014, 6: 6468.
[80] Lee H, Dellatore S M, Miller W M, Messersmith P B. Science, 2007, 318: 426.
[81] Yang H C, Luo J, Lv Y, Shen P, Xu Z K. J. Membr. Sci., 2015, 483: 42.
[82] 张慧(Zhang H), 周雅静(Zhou Y J), 宋肖锴(Song X K). 化学进展(Prog. Chem.), 2015, 27: 212.
[1] Yanhua Sang, Haihua Pan, Ruikang Tang. Condensed-Matter Chemistry in Biomineralization [J]. Progress in Chemistry, 2020, 32(8): 1100-1114.
[2] Pan Yu, Li Na, Zhou Runhong, Zhao Min. Nano-Magnetosomes in Magnetotactic Bacteria [J]. Progress in Chemistry, 2013, 25(10): 1781-1794.
[3] Wang Ben, Tang Ruikang*. Biomineralization: One Promising Bridge between Inorganic Chemistry and Biomedicine [J]. Progress in Chemistry, 2013, 25(04): 633-641.
[4] Ouyang Jianming*, Zhang Guangna, Wang Fengxin, Li Junjun. Nucleation, Growth, and Aggregation of Nanocrystallites in Urine of Calcium Oxalate Stone Patients as well as Kidney Stone Formation [J]. Progress in Chemistry, 2013, 25(04): 642-649.
[5] Liu Chuang, Wang Yuangui, Geng Jiaqing, Jiang Zhongyi, Yang Dong. Biosynthesis of Inorganic Nanoparticles [J]. Progress in Chemistry, 2011, 23(12): 2510-2521.
[6] Wu Congmeng, Wang Xiaoqiang, Zhao Kang, Cao Meiwen, Xu Hai, Lü Jianren. AFM Study of Calcite Growth and Dissolution on the (104) Face [J]. Progress in Chemistry, 2011, 23(01): 107-124.
[7] Ouyang Jianming, Yang Rue, Tan Jin. Effect of Renal Epithelial Cell After Injury on Biomineralization of Calcium Oxalate [J]. Progress in Chemistry, 2010, 22(08): 1665-1671.
[8] Cai Guobin|Guo Xiaohui|Yu Shuhong**. Polymer Controlled Biomimetic Mineralization [J]. Progress in Chemistry, 2008, 20(0708): 1001-1014.
[9] Xu Xurong|Cai Anhua|Liu Rui|Pan Haihua|Tang Ruikang**. Amorphous Calcium Carbonate in Biomineralization [J]. Progress in Chemistry, 2008, 20(01): 54-59.
[10] Ou Yangjianming**. Research Progress in Lattice Matching and Electrostatic Compatibility in Growth of Biominerals Induced by Monolayers [J]. Progress in Chemistry, 2005, 17(05): 931-937.
[11] Ouyang Jianming**. Biominerals and Their Mineralization Process [J]. Progress in Chemistry, 2005, 17(04): 749-756.
[12] Ou Yangjianming**,Chen Dezhi. The Growth of Biomineral Crystals Modulated by Self-Assembled Monolayers [J]. Progress in Chemistry, 2005, 17(03): 563-572.
[13] Mao Chuanbin,Li Hengde,Cui Fuzhai,Feng Qingling,Wang Hao. Biomimetic Synthesis of Inorganic Materials [J]. Progress in Chemistry, 1998, 10(03): 246-.