中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (6): 675-686 DOI: 10.7536/PC150129 Previous Articles   Next Articles

• Supramolecular Chemistry Issue •

The Application of Templated-Directed Clipping Approach in Constructing Mechanically Interlocked Molecules Based on N-Hetero Crown Ethers

Han Xie, Hu Fang, Ge Haojie, Liu Shenghua, Yin Jun*   

  1. Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
  • Received: Revised: Online: Published:
  • Contact: 10.7536/PC150129 E-mail:yinj@mail.ccnu.edu.cn
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21472059, 21402057).
PDF ( 570 ) Cited
Export

EndNote

Ris

BibTeX

With the rapid development of supramolecular chemistry, the mechanically interlocked molecules based on N-hetero crown ethers (NHCE) have attracted increasing interest in recent years. Compared with the traditional synthetic methods, the templated clipping approach has unique advantages in constructing mechanically interlocked molecules based on NHCE, and many important advances have been obtained. Scientists have not only gradually expanded the topological structures of mechanically interlocked molecules based on NHCE, but also enriched their application in various regions. Herein, we summarize the progress of templated clipping approach in the structure construction of the mechanically interlocked molecules (such as rotaxanes, catenanes, heterorotaxanes, rotacatenanes, oligomers, daisy chains and dendritic molecules) and their potential applications.

Contents
1 Introduction
2 Rotaxanes based on NHCE
2.1 Oligorotaxanes
2.2 Rectangular rotaxanes
2.3 Dendritic rotaxanes
2.4 Heterorotaxanes
2.5 Functional rotaxanes
3 Catenanes based on NHCE
4 Rotaxane-fused-catenane integrations
5 Daisy chains based on NHCE
6 Conclusion

CLC Number: 

[1] Stoddart J F. Chem. Soc. Rev., 2009, 38: 1802.
[2] Mateo-Alonso A. Chem. Commun., 2010, 46: 9089.
[3] Fang L, Olson M A, Benítez D, Tkatchouk E, Goddard W A, Stoddart J F. Chem. Soc. Rev., 2010, 39: 17.
[4] Boyle M M, Smaldone R A, Whalley A C, Ambrogio M W, Botros Y Y, Stoddart J F. Chem. Sci., 2011, 2: 204.
[5] Ramakrishnam Raju M V, Lin H C. Org. Lett., 2014, 16: 5564.
[6] 陈传峰(Chen C F), 杨勇(Yang Y). 超分子组装: 结构与功能(Supramolecular Assembly : Structure and Function). 北京: 科学出版社(Beijing: Science Press), 2014.
[7] 孙书(Sun S), 石建兵(Shi J B), 董宇平(Dong Y P), 胡晓玉(Hu X Y), 王乐勇(Wang L Y). 化学进展(Progress in Chemistry), 2014, 26(8): 1409
[8] 杨再文(Yang Z W), 刘向荣(Liu X R), 赵顺省(Zhao S S), 何金梅(He J M). 化学进展(Progress in Chemistry), 2014, 26(12): 1899.
[9] Cheng Y, Liu Y. Chem. Soc. Rev., 2010, 39: 495.
[10] Ma X, Tian H. Chem. Soc. Rev., 2010, 39: 70.
[11] Hänni K D, Leigh D A. Chem. Soc. Rev., 2010, 39: 1240.
[12] Beves J E, Blight B A, Campbell C J, Leigh D A, McBurney R T. Angew. Chem. Int. Ed., 2011, 50: 9260.
[13] Qu D H, Tian H. Chem. Sci., 2011, 2: 1011.
[14] Neal E A, Goldup S M. Chem. Commun., 2014, 50: 5128.
[15] Dong S Y, Zheng B, Wang F, Huang F H. Acc. Chem. Res., 2014, 47: 1982.
[16] 刘鹏(Liu P), 邵学广(Shao X G), 蔡文生(Cai W S). 化学进展(Progress in Chemistry), 2013, 25(5): 692.
[17] Yang Y W, Sun Y L, Song N. Acc. Chem. Res., 2014, 47: 1950.
[18] Han Y, Meng Z, Ma Y X, Chen C F. Acc. Chem. Res., 2014, 47: 2026.
[19] Coskun A, Spruell J M, Barin G, Dichtel W R, Flood A H, Botros Y Y, Stoddart J F. Chem. Soc. Rev., 2012, 41: 4827.
[20] 刘育(Liu Y), 尤长城(You C C), 张衡益(Zhang H Y). 超分子化学——合成受体的分子识别与组装(Supramolecular Chemistry——Molecular Recognition and Assembly of Synthetic Acceptors). 天津: 南开大学出版社(Tianjin: Nankai University Press), 2001.
[21] 刘育(Liu Y), 张衡益(Zhang H Y), 李莉(Li L), 王浩(Wang H). 纳米超分子化学——从合成受体到功能组装体(Nanoscale Supramolecular Chemistry——From Synthetic Receptors to Functional Assemblies). 北京: 化学工业出版社(Beijing: Chemical Industry Press), 2004.
[22] 黄飞鹤(Huang F H), 翟春熙(Zhai C X), 郑波(Zheng B),李世军(Li S J). 超分子聚合物(Supralmolecular Polymers). 杭州: 浙江大学出版社(Hangzhou: Zhejiang University Press), 2012.
[23] Steed J W, Atwood J L. Supramolecular Chemistry, 2nd edition, Wiley, New York: 2009.
[24] Glink P T, Oliva A I, Stoddart J F, White A J P, Williams D J. Angew. Chem. Int. Ed., 2001, 40: 1870.
[25] Leung K C, Wong W Y, Aricó F, Haussmann P C, Stoddart J F. Org. Biomol. Chem., 2010, 8: 83.
[26] Frisch H L, Wasserman E. J. Am. Chem. Soc., 1961, 83: 3789.
[27] Kay E R, Leigh D A, Zerbetto F. Angew. Chem. Int. Ed., 2007, 46: 72.
[28] Wu J S, Leung K C F, Stoddart J F. Proc. Natl. Acad. Sci. U. S. A., 2007, 104: 17266.
[29] Yin J, Dasgupta S, Wu J S. Org. Lett., 2010, 12: 1712.
[30] Belowich M E, Valente C, Stoddart J F. Angew. Chem. Int. Ed., 2010, 49: 7208.
[31] Belowich M E, Valente C, Smaldone R A, Friedman D C, Thiel J, Cronin L, Stoddart J F. J. Am. Chem. Soc., 2012, 134: 5243.
[32] Aricó F, Chang T, Cantrill S J, Khan S I, Stoddart J F. Chem. Eur. J., 2005, 11: 4655.
[33] Astruc D, Chardac F. Chem. Rev., 2001, 101: 2991.
[34] Rosen B M, Wilson C J, Wilson D A, Peterca M, Imam M R, Percec V. Chem. Rev., 2009, 109: 6275.
[35] Leung K C, Aricó F, Chang T, Cantrill S J, Stoddart J F. J. Am. Chem. Soc., 2005, 127: 5808
[36] Leung K C, Aricó F, Chang T, Cantrill S J, Stoddart J F. Macromolecules, 2007, 40: 3951.
[37] Liu G X, Li Z Y, Wu D, Xue W, Li T T, Liu S H, Yin J. J. Org. Chem., 2014, 79: 643.
[38] Yin J, Chi C Y, Wu J S. Org. Biomol. Chem., 2010, 8: 2594.
[39] Wilson E A, Vermeulen N A, McGonigal P R, Avestro A J, Sarjeant A A, Stern C L, Stoddart J F. Chem. Commun., 2014, 50: 9665.
[40] Li Z Y, Liu G X, Xue W, Wu D, Yang Y W, Wu J S, Liu S H, Yoon J Y, Yin J. J. Org. Chem., 2013, 78: 11560.
[41] Zhou W D, Li J B, He X R, Li C H, Lv J, Li Y L, Wang S, Liu H B, Zhu D B. Chem. Eur. J., 2008, 14: 754.
[42] Avestro A J, Gardner D M, Vermeulen N A, Wilson E A, Schneebeli S T, Whalley A C, Belowich M E, Carmieli R, Wasielewski M R, Stoddart J F. Angew. Chem. Int. Ed., 2014, 53: 4442.
[43] Hu F, Huang J Y, Cao M J, Chen Z, Yang Y W, Liu S H, Yin J. Org. Biomol. Chem., 2014, 12: 7712.
[44] Sauvage J P, Collin J P, Chambron, J C, Gulllerez S, Coudret C. Chem. Rev., 1994, 94: 993
[45] Stoddart J F. Chem. Soc. Rev., 2009, 38: 1521.
[46] Li Z Y, Liu W J, Wu J S, Liu S H, Yin J. J. Org. Chem., 2012, 77: 7129.
[47] Li Z Y, Hu F, Liu G X, Xue W, Chen X Q, Liu S H, Yin J. Org. Biomol. Chem., 2014, 12: 7702.
[48] Xue W, Li Z Y, Liu G X, Chen X Q, Li T T, Liu S H, Yin J. Org. Biomol. Chem., 2014, 12: 4862.
[49] Bozdemir O A, Barin G, Belowich M E, Basuray A N, Beuerle F, Stoddart J F. Chem. Commun., 2012, 48: 10401.
[1] Long Cheng, Dajiang Yu, Jiajian You, Teng Long, Susu Chen, Chuanjian Zhou. Silicone Self-Healing Materials [J]. Progress in Chemistry, 2018, 30(12): 1852-1862.
[2] Chuang Yao, Xi Zhang, Yongli Huang, Lei Li, Zengsheng Ma, Changqing Sun. Perspective: Structures and Properties of Liquid Water [J]. Progress in Chemistry, 2018, 30(8): 1242-1256.
[3] Lianxun Gao, Chuanqing Kang*, Lianxun Gao. Anion-Naphthalenediimide Interactions and Their Applications [J]. Progress in Chemistry, 2018, 30(7): 902-912.
[4] Chuncai Zhou, Chuncai Zhou*. Design, Synthesis and Applications of Antimicrobial Peptides and Antimicrobial Peptide-Mimetic Copolymers [J]. Progress in Chemistry, 2018, 30(7): 913-920.
[5] Ting Wang, Rui Xue, Yuli Wei, Mingyue Wang, Hao Guo, Wu Yang. Development and Applications of Covalent Organic Frameworks(COFs) Materials: Gas Storage, Catalysis and Chemical Sensing [J]. Progress in Chemistry, 2018, 30(6): 753-764.
[6] Yuxia Gao, Yun Liang, Jun Hu, Yong Ju. Supramolecular Chiral Self-Assembly Based on Small Molecular Natural Products [J]. Progress in Chemistry, 2018, 30(6): 737-752.
[7] Xiang Wang*. Macrocyclic and Supramolecular Chemistry: From Heteracalixaromatics to Coronarenes——In Memory of Professor Zhi-Tang Huang [J]. Progress in Chemistry, 2018, 30(5): 463-475.
[8] Jun Luo, YanSong Zheng. Chiral Calixarenes and Their Supramolecular Chirality [J]. Progress in Chemistry, 2018, 30(5): 601-615.
[9] Hanxiao Wang, Ying Han, Chuanfeng Chen*. The Directional Threading of Guests and Construction of Orientational Assemblies Based on Three-Dimensional Nonsymmetrical Hosts [J]. Progress in Chemistry, 2018, 30(5): 616-627.
[10] Qian Zhao, Shenghua Li, Yu Liu*. Construction and Functions of Supramolecular Cyclodextrin Gels [J]. Progress in Chemistry, 2018, 30(5): 673-683.
[11] Juan Ren, Shen Bian, Yiyun Wang, Xianglei Kong. Magic-Number Cluster of Serine Octamer: Structure and Chiral Characteristics [J]. Progress in Chemistry, 2018, 30(4): 383-397.
[12] Chengjiang Zhang, Xiaoyan Yuan, Zeli Yuan, Yongke Zhong, Zhuomin Zhang, Gongke Li. Covalent Organic Framework Materials Based on Schiff-Base Reaction [J]. Progress in Chemistry, 2018, 30(4): 365-382.
[13] Yan Zhang, Xuejie Liu, Nan Yan, Yuexin Hu, Haiying Li, Yutian Zhu. Confined Self-Assembly of Block Copolymers within the Three-Dimensional Soft Space [J]. Progress in Chemistry, 2018, 30(2/3): 166-178.
[14] Kunpeng Jiang, Xiaojun Han*. Preparation and Applications of PoPD Micro/Nano Related Structures [J]. Progress in Chemistry, 2017, 29(12): 1499-1508.
[15] Tian Zhao*, Ming Dong, Yi Zhao, Yuejun Liu*. Preparation and Application of Nano-Sized Metal-Organic Frameworks [J]. Progress in Chemistry, 2017, 29(10): 1252-1259.