中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (9): 1324-1332 DOI: 10.7536/PC150122 Previous Articles   

• Review and comments •

Perspectives on Ionic Liquids and Ionic Liquid Membranes for Natural Gas Sweetening

Meng Yanshan1, Chen Yuhuan2*, Deng Yuchen2, Zhang Shuming2, Wang Guixiang2   

  1. 1. No.4 Company, China Petroleum Pipeline Bureau, Langfang 065000, China;
    2. School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21206027, 21576064).
PDF ( 1203 ) Cited
Export

EndNote

Ris

BibTeX

Natural gas sweetening, especially CO2 cleaning, is an important prerequisite in many different applications and industrial areas for meeting increased environmental requirements. Ionic liquids as green solvents have attracted great attention due to the unique properties, e.g., extremely low vapor pressure, non-flammable, excellent solvent power for organic and inorganic compounds and easy to be modified structurally to elicit desired physical properties. As a result, ionic liquid membranes are emerging as promising candidates rivaling with conventional amine scrubbing. This brief review presents a survey of the most recent development in ionic liquid membranes for natural gas sweetening. Membranes based on all kinds of ionic liquids, e.g., conventional ionic liquids, task-specific ionic liquids, polymeric ionic liquids and ionic liquid mixtures have been reviewed. The properties of ionic liquids are greatly affected by structures, such as alkyl chain length on cation, anion size and functionalization of both cations and anions. In addition to the above effects, performances of ionic liquid membranes are also involved in pore size and hydrophobicity/hydrophilicity of supporting membranes, humidity/water content and free ionic liquids in poly ionic liquids. Furthermore, the future developments of ionic liquid membranes for gas sweetening are suggested aiming to expand these membranes to large scale processes.

Contents
1 Introduction
2 Kinds of ionic liquids
3 Ionic liquid membranes for acid gas capture
3.1 Membranes based on conventional ionic liquid
3.2 Membranes based on task-specific ionic liquid
3.3 Membranes based on polymerized ionic liquid
3.4 Membranes based on ionic liquid mixture
4 Conclusions and outlook

CLC Number: 

[1] Blanchard L A, Hancu D, Beckman E J, Brennecke J F. Nature, 1999, 399: 28.
[2] Lee S H, Kim B S, Lee E W, Park Y I, Lee J M. Desalination, 2006, 200: 21.
[3] Walden P. Bull. Acad. St. Petersburg: Imper. Sci., 1914. 1800.
[4] Wilkes J S, Zaworotko M J. J. Chem. Soc. Chem.Commun., 1992, 13: 965.
[5] Quinn R, Appleby J B, Pez G P. J. Membr. Sci., 1995, 104: 139.
[6] Cserjési P, Nemestóthy N, Bélafi-Bakó K. J. Membr. Sci., 2010, 349: 6.
[7] Robeson L M. J. Membr. Sci., 2008, 320: 390.
[8] Taniguchi I, Fujikawa S. Energy Procedia, 2014, 63: 235.
[9] Close J J, Farmer K, Moganty S S, Baltus R E. J. Membr. Sci., 2012, 390: 201.
[10] Neves L A, Crespo J G, Coelhoso I M. J. Membr. Sci., 2010, 357: 160.
[11] Zhao W, He G, Zhang L, Ju J, Dou H, Nie F, Li C, Liu H. J. Membr. Sci., 2010, 350: 279.
[12] Cheng L H, Rahaman M S A, Ru Yao R, Zhang L, Xu X H, Chen H L, Lai J Y, Tung K L. Int. J. Greenhouse Gas Control, 2014, 21: 82.
[13] Scovazzo P. J. Membrane Sci., 2009, 343: 199.
[14] Ilconicha J, Myersb C, Pennlineb H, Luebke D. J. Membr. Sci., 2007, 298: 41.
[15] Baltus R E, Counce R M, Culbertson B H, Luo H, Depaoli D W, Dai S, Duckworth D C. Sep. Sci. Technol., 2005, 40: 525.
[16] Barghi S H, Adibi M, Rashtchian D. J. Membr. Sci., 2010, 362: 346.
[17] Kreiter R, Overbeek J P, Correia L A, Vente J F. J. Membr. Sci., 2011, 370: 175.
[18] Mulder M. Basic Principles of Membrane Technology. 2nd ed. Kluwer Academic Publishers, 1996.
[19] Bates E D, Mayton R D, Ntai I, Davis Jr J H. J. Am. Chem. Soc., 2002, 124: 926.
[20] Kasahara S, Kamio E, Matsuyama H. J. Membr. Sci., 2014, 454: 155.
[21] Kasahara S, Kamio E, Ishigami T, Matsuyama H. J. Membr. Sci., 2012, 415/416: 168.
[22] Hanioka S, Maruyama T, Sotani T, Teramoto M, Matsuyama H, Nakashima K, Hanaki M, Kubota F, Goto M. J. Membr. Sci., 2008, 314: 1.
[23] Albo J, Yoshioka T, Tsuru T. Sep. Purif. Technol. 2014, 122: 440.
[24] Santos E, Albo J, Irabien A. J. Membrane Sci., 2014, 452: 277.
[25] Mahurin S M, Lee J S, Baker G A, Luo H, Dai S. J. Membr. Sci., 2010, 353: 177.
[26] Freemantle M. Chem. Eng. News, 2000, 78(20): 37.
[27] Bhavsar R S, Kumbharkar S C, Kharul U K. J. Membr. Sci., 2014, 470: 494.
[28] Bhavsar R S, Kumbharkar S C, Kharul U K. J. Membr. Sci., 2012, 389: 305.
[29] Hudiono Y C, Carlisle T K, Bara J E, Zhang Y, Gin D L, Noble R D. J. Membr. Sci., 2010, 350: 117.
[30] Hudiono Y C, CarlisleT K, LaFrate A L, Gin D L, Noble R D. J. Membr. Sci., 2011, 370: 141.
[31] Tomé L C, Mecerreyes D, Freire C S R, Rebelo L P N, Marrucho I M. J. Membr. Sci., 2013, 428: 260.
[32] Hao L, Li P, Yang T, Chung T S. J. Membr. Sci., 2013, 436: 221.
[33] Liang L, Gan Q, Nancarrow P. J. Membr. Sci., 2014, 450: 407.
[34] Lee S H, Kim B S, Lee E W, Park Y I, Lee J M. Desalination, 2006, 200: 21.
[35] Uchytil P, Schauer J, Petrychkovych R, Setnickova K, Suen S Y. J. Membr. Sci., 2011, 383: 262.
[36] Cho E K, Park J S, Sekhon S S, Park G G,Yang T H, Lee W Y, Kim C S, Park S B. J. Electrochem. Soc., 2009, 156(2): B197.
[37] Hudiono Y C, Carlisle T K, Bara J E, Zhang Y, Gin D L, Noble R D. J. Membr. Sci., 2010, 350: 117.
[38] Kanehashi S, Kishida M, Kidesaki T, Shindo R, Sato S, Miyakoshi T, Nagai K. J. Membr. Sci., 2013, 430: 211.
[39] Daletou M K, Kallitsis J K, Voyiatzis G, Neophytides S G. J. Membr. Sci., 2009, 326: 76.
[40] Krull F F, Fritzmann C, Melin T. J. Membr. Sci., 2008, 325: 509.
[41] Kusakabe K, Ichiki K, Hayashi J, Maeda H, Morookab S. J. Membr. Sci., 1996, 115: 65.
[42] Xu Z K, Xiao L, Wang J L, Springer J. J. Membr. Sci., 2002, 202: 27.
[43] Scovazzo P, Havard D, McShea M, Mixon S, Morgan D. J. Membr. Sci., 2009, 327: 41.
[1] Zonghan Xue, Nan Ma, Weigang Wang. Nitrated Mono-Aromatic Hydrocarbons in the Atmosphere [J]. Progress in Chemistry, 2022, 34(9): 2094-2107.
[2] Hui Zhao, Wenbo Hu, Quli Fan. Two-Photon Fluorescence Probe in Bio-Sensor [J]. Progress in Chemistry, 2022, 34(4): 815-823.
[3] Jie Zhao, Shuai Deng, Li Zhao, Ruikai Zhao. CO2 Adsorption Capture in Wet Gas Source: CO2/H2O Co-Adsorption Mechanism and Application [J]. Progress in Chemistry, 2022, 34(3): 643-664.
[4] Dechao Wang, Yangyang Xin, Xiaoqian Li, Dongdong Yao, Yaping Zheng. Porous liquids and Their Applications in Gas Capture and Separation [J]. Progress in Chemistry, 2021, 33(10): 1874-1886.
[5] Jiaen Xie, Yuheng Luo, Qianling Zhang, Pingyu Zhang. Metal Complexes in Application of Two-Photon Luminescence Probes [J]. Progress in Chemistry, 2021, 33(1): 111-123.
[6] Yifan Xue, Wenhui Meng, Runze Wang, Junjie Ren, Weili Heng, Jianjun Zhang. Supersaturation Theory and Supersaturating Drug Delivery System(SDDS) [J]. Progress in Chemistry, 2020, 32(6): 698-712.
[7] Jing Wen, Yuhong Li, Li Wang, Xiunan Chen, Qi Cao, Naipu He. Carbon Dioxide Smart Materials Based on Chitosan [J]. Progress in Chemistry, 2020, 32(4): 417-422.
[8] Xiaoyin Li, Chuancong Zhou, Yinghua Wang, Feifei Ding, Huawei Zhou, Xianxi Zhang. Sn-Based Light-Absorbing Materials for Perovskite Solar Cells [J]. Progress in Chemistry, 2019, 31(6): 882-893.
[9] Xinda Yang, Qin Jiang, Pengfei Shi*. Two-Photon Absorptive Multinuclear Complexes [J]. Progress in Chemistry, 2018, 30(8): 1172-1185.
[10] Liying Liu, He Gong, Zhe Wang, Gang Li, Tao Du. Application of Pressure Swing Adsorption Technology to Capture CO2 in Highly Humid Flue Gas [J]. Progress in Chemistry, 2018, 30(6): 872-878.
[11] Huan Wang, Luoran Shang, Xiaoxiao Gu, Fei Rong, Yuanjin Zhao. The Preparation and Biomedical Applications of Encoded Microcarriers [J]. Progress in Chemistry, 2017, 29(10): 1159-1172.
[12] Chibao Huang*, Shaoying Chen. Two-Photon Fluorescence Probe [J]. Progress in Chemistry, 2017, 29(10): 1215-1227.
[13] Xiaomei Lu, Pengfei Chen, Wenbo Hu, Yufu Tang, Wei Huang, Quli Fan. Organic Optoelectronic Materials for Photoacoustic Imaging [J]. Progress in Chemistry, 2017, 29(1): 119-126.
[14] Fang Mengxiang, Zhou Xuping, Wang Tao, Luo Zhongyang. Solvent Development in CO2 Chemical Absorption [J]. Progress in Chemistry, 2015, 27(12): 1808-1814.
[15] Ren Xiaojie, Lu Xiaomei, Fan Quli, Huang Wei. Conjugated Polymers with Two-Photon Absorption for Bioimaging [J]. Progress in Chemistry, 2013, 25(10): 1739-1750.