中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (7): 882-912 DOI: 10.7536/PC150121 Previous Articles   Next Articles

• Review and comments •

Microfluidics-Based Circulating Tumor Cells Separation

Huang Di, Xiang Nan, Tang Wenlai, Zhang Xinjie, Ni Zhonghua*   

  1. Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Basic Research Program of China (No.2011CB707601), the National Natural Science Foundation of China(No.51375089), and the Jiangsu Graduate Innovative Research Program(No.CXLX13_080).
PDF ( 3311 ) Cited
Export

EndNote

Ris

BibTeX

Circulating tumor cells (CTCs), a “liquid biopsy” circulating in the cancer patients' peripheral blood, play an important role in the therapeutic and diagnostic of cancer. Due to the extremely low concentration of CTCs in blood, enrichment has been regarded as an essential pre-treament step for efficient detection of CTCs. Traditional macroscopic separation schemes have achieved a large success in CTCs enrichment. However, these methods still suffer from some disadvantages such as time consuming, large volume blood samples required, easy to lose target cells and labor-intensive. Microfluidics, which integrates physical, chemical and biological technologies at microscale level, provides a miniaturized, low-cost and protable tool for efficient CTCs separation. In this review, we cover the recent advances in passive and active microfluidic CTCs separation methods. The detail working principles, biomedical applications, advantages and drawbacks of these methods are discussed, and a novel multistage microfluidic chip for CTCs separation is also proposed. Finally, we discuss the critical concerns and the future trends of CTCs separation microfluidic devices in clinical applications.

Contents
1 Introduction
2 Passive separation techniques
2.1 Microscale filtration
2.2 Field flow and hydrodynamic fractionation
2.3 Deterministic lateral displacement
2.4 Inertia separation
2.5 Biomimetic separation
2.6 Affinity separation
3 Positive separation techniques
3.1 Dielectrophoresis separation
3.2 Magnetic separation
3.3 Acoustic separation
3.4 Optical separation
4 Multistage separation
5 Conclusion and outlook

CLC Number: 

[1] Aggarwal C, Meropol N J, Punt C J, Iannotti N, Saidman B H, Sabbath K D, Gabrail N Y, Picus J, Morse M A, Mitchell E, Miller M C, Cohen S J. Ann. Oncol., 2013, 24: 420.
[2] Ross A A, Cooper B W, Lazarus H M, Mackay W, Moss T J, Ciobanu N, Tallman M S, Kennedy M J, Davidson N E, Sweet D, Winter C, Akard L, Jansen J, Copelan E, Meagher R C, Herzig R H, Klumpp T R, Kahn D G, Warner N E. Blood, 1993, 82: 2605.
[3] Bilkenroth U, Taubert H, Riemann D, Rebmann U, Heynemann H, Meye A. Int. J. Cancer, 2001, 92: 577.
[4] Molnar B, Ladanyi A, Tanko L, Sreter L, Tulassay Z. Clin. Cancer Res., 2001, 7: 4080.
[5] Naoe M, Ogawa Y, Morita J, Omori K, Takeshita K, Shichijyo T, Okumura T, Igarashi A, Yanaihara A, Iwamoto S, Fukagai T, Miyazaki A, Yoshida H. Cancer (Hoboken, NJ, U. S.), 2007, 109: 1439.
[6] Mehlen P, Puisieux A. Nat. Rev. Cancer, 2006, 6: 449.
[7] Pantel K, Alix-Panabieres C. Trends Mol. Med., 2010, 16: 398.
[8] Ejeckam G C, Sogbein S K, Mcleish W A. Can. Med. Assoc. J., 1979, 120: 336.
[9] Cristofanilli M, Budd G T, Ellis M J, Stopeck A, Matera J, Miller M C, Reuben J M, Doyle G V, Allard W J, Terstappen L W M M, Hayes D F. N. Engl. J. Med., 2004, 351: 781.
[10] Hou J M, Krebs M G, Lancashire L, Sloane R, Backen A, Swain R K, Priest L J C, Greystoke A, Zhou C, Morris K, Ward T, Blackhall F H, Dive C. J. Clin. Oncol., 2012, 30: 525.
[11] Balic M, Williams A, Lin H, Datar R, Cote R J. Annu. Rev. Med., 2013, 64: 31.
[12] Bidard F C, Fehm T, Ignatiadis M, Smerage J B, Alix-Panabieres C, Janni W, Messina C, Paoletti C, Muller V, Hayes D F, Piccart M, Pierga J Y. Cancer Metastasis Rev., 2013, 32: 179.
[13] Liotta L A, Saidel M G, Kleinerman J. Cancer Res., 1976, 36: 889.
[14] Miller M C, Doyle G V, Terstappen L W. J. Oncol., 2010, 2010: 617421.
[15] Kreuger A, Akerblom O, Hogman C F. Vox Sang., 1975, 29: 81.
[16] Lozada J L, Caplanis N, Proussaefs P, Willardsen J, Kammeyer G. J. Oral Implantol., 2001, 27: 38.
[17] Pasqualetti D, Ghirardini A, Cristina A M, Vaglio S, Fakeri A, Waldman A A, Girelli G. Transfus. Apher. Sci., 2004, 30: 23.
[18] Renzi P, Ginns L C. J. Immunol. Methods, 1987, 98: 53.
[19] Bonner W A, Sweet R G, Hulett H R, Herzenbe L A. Rev. Sci. Instrum., 1972, 43: 404.
[20] Miltenyi S, Muller W, Weichel W, Radbruch A. Cytometry, 1990, 11: 231.
[21] Allard W J, Matera J, Miller M C, Repollet M, Connelly M C, Rao C, Tibbe A G J, Uhr J W, Terstappen L W M M. Clin. Cancer Res., 2004, 10: 6897.
[22] De Bono J S, Scher H I, Montgomery R B, Parker C, Miller M C, Tissing H, Doyle G V, Terstappen L W, Pienta K J, Raghavan D. Clin. Cancer Res., 2008, 14: 6302.
[23] Liu M C, Shields P G, Warren R D, Cohen P, Wilkinson M, Ottaviano Y L, Rao S B, Eng-Wong J, Seillier-Moiseiwitsch F, Noone A M, Isaacs C. J. Clin. Oncol., 2009, 27: 5153.
[24] Whitesides G M. Nature, 2006, 442: 368.
[25] 方肇伦(Fang Z L), 徐章润(Xun Z R), 方瑾(Fang J). 化学进展(Progress in Chemistry), 2006, 18(2): 1577.
[26] 冯颖(Feng Y), 王敏(Wang M). 化学进展(Progress in Chemistry), 2006, 18(07/08): 966.
[27] 耿利娜(Geng L N), 姜萍(Jiang P), 徐建栋(Xu J D), 车宝泉(Che B Q), 屈锋(Qu F), 邓玉林(Deng Y L). 化学进展(Progress in Chemistry), 2009, 21(9): 1905.
[28] 姜萍(Jiang P), 屈锋(Qu F), 谭信(Tan X), 李勤(Li Q), 耿利娜(Geng L N), 邓玉林(Deng Y L). 化学进展(Progress in Chemistry), 2009, 21(9): 1895.
[29] 冷川(Leng C), 张晓清(Zhang X Q), 鞠熀先(Ju H X). 化学进展(Progress in Chemistry), 2009, 21(4): 687.
[30] 瞿祥猛(Qu X M), 林荣生(Lin R S), 陈宏(Chen H). 化学进展(Progress in Chemistry), 2011, 23(1): 221.
[31] 王立凯(Wang L K), 冯喜增(Feng X Z). 化学进展(Progress in Chemistry), 2005, 17(3): 482.
[32] 徐溢(Xu Y), 吕君江(Lv J J), 范伟(Fan W), 温志渝(Wen Z Y). 化学进展(Progress in Chemistry), 2007, 19(5): 820.
[33] 徐溢(Xu Y), 张剑(Zhang J), 徐平洲(Xu P Z), 卢倩(Lu Q), 曾雪(Zeng X), 温志渝(Wen Z Y). 化学进展(Progress in Chemistry), 2007, 19(1): 186.
[34] Yeo L Y, Chang H C, Chan P P Y, Friend J R. Small, 2011, 7: 12.
[35] Cima I, Yee C W, Iliescu F S, Phyo W M, Lim K H, Iliescu C, Tan M H. Biomicrofluidics, 2013, 7: 011810.
[36] Hyun K A, Jung H I. Lab Chip, 2014, 14: 45.
[37] Sajeesh P, Sen A K. Microfluid. Nanofluid., 2014, 17: 1.
[38] Yu Z T F, Yong K M A, Fu J P. Small, 2014, 10: 1687.
[39] Sun D K, Wang Y, Jiang D, Xiang N, Chen K, Ni Z H. Appl. Phys. Lett., 2013, 103: 071905.
[40] Sun D K, Xiang N, Jiang D, Chen K, Yi H, Ni Z H. Chin. Phys. B, 2013, 22: 114704.
[41] Sun D K, Jiang D, Xiang N, Chen K, Ni Z H. Chin. Phys. Lett., 2013, 30: 074702.
[42] Jiang D, Sun D K, Xiang N, Chen K, Yi H, Ni Z H. Biomicrofluidics, 2013, 7: 034113.
[43] 项楠(Xiang N), 朱晓璐(Zhu X L), 倪中华(Ni Z H). 化学进展(Progress in Chemistry), 2011, 23(9): 1945.
[44] Xiang N, Chen K, Sun D K, Wang S F, Yi H, Ni Z H. Microfluid. Nanofluid., 2013, 14: 89.
[45] Xiang N, Yi H, Chen K, Sun D K, Jiang D, Dai Q, Ni Z H. Biomicrofluidics, 2013, 7: 044116.
[46] Xiang N, Chen K, Dai Q, Jiang D, Sun D, Ni Z. Microfluid. Nanofluid., 2015, 18: 29.
[47] 朱晓璐(Zhu X L), 倪中华(Ni Z H). 东南大学学报(自然科学版)(Journal of Southeast University(Natural Science Edition)), 2007, 37(5): 861.
[48] Zhu X L, Yi H, Ni Z H. Biomicrofluidics, 2010, 4: 013202.
[49] Ni Z H, Zu S C, Chen K. Sci. China: Technol. Sci., 2011, 54: 3035.
[50] Zhu X L, Gao Z Q, Yin Z F, Ni Z H. Microfluid. Nanofluid., 2010, 9: 981.
[51] Zhu X L, Yin Z F, Ni Z H. Microfluid. Nanofluid., 2012, 12: 529.
[52] Chen K, Quan Y, Song C, Xiang N, Jiang D, Sun D, Yang J, Yi H, Ni Z. Sens. Actuators A, 2014, published online, DOI:10.1016/j.sna.2014.07.025.
[53] Chen K, Xiang N, Quan Y L, Zhu X L, Sun D K, Yi H, Ni Z H. Microfluid. Nanofluid., 2014, 16: 237.
[54] 唐文来(Tang W L), 项楠(Xiang N), 黄笛(Huang D), 张鑫杰(Zhang X J), 顾兴中(Gu X Z), 倪中华(Ni Z H). 化学进展(Progress in Chemistry), 2014, 26(6): 1050.
[55] Ji H M, Samper V, Chen Y, Heng C K, Lim T M, Yobas L. Biomed. Microdevices, 2008, 10: 251.
[56] VanDelinder V, Groisman A. Anal. Chem., 2006, 78: 3765.
[57] Crowley T A, Pizziconi V. Lab Chip, 2005, 5: 922.
[58] Wilding P, Kricka L J, Cheng J, Hvichia G, Shoffner M A, Fortina P. Anal. Biochem., 1998, 257: 95.
[59] Chen Z Z, Zhang S Y, Tang Z M, Xiao P F, Guo X Y, Lu Z H. Surf. Interface Anal., 2006, 38: 996.
[60] Chen X, Cui D F, Liu C C, Li H. Sens. Actuators B, 2008, 130: 216.
[61] Sim T S, Minseok S, Moon H S. Proceedings of the Sixteenth International Conference on Miniaturized Systems for Chemistry and Life Sciences (μTAS 2012) (Eds. Fujii T, Hibara A, Takeuchi S, et al.). Okinawa. 2012. 1114
[62] Wilding P, Pfahler J, Bau H H, Zemel J N, Kricka L J. Clin. Chem., 1994, 40: 43.
[63] Mohamed H, McCurdy L D, Szarowski D H, Duva S, Turner J N, Caggana M. IEEE T. NanoBiosci., 2004, 3: 251.
[64] Mohamed H, Turner J N, Caggana M. J. Chromatogr. A, 2007, 1162: 187.
[65] Mohamed H, Murray M, Turner J N, Caggana M. J. Chromatogr. A, 2009, 1216: 8289.
[66] Preira P, Grandne V, Forel J M, Gabriele S, Camara M, Theodoly O. Lab Chip, 2013, 13: 161.
[67] Tan S J, Yobas L, Lee G Y H, Ong C N, Lim C T. Biomed. Microdevices, 2009, 11: 883.
[68] McFaul S M, Lin B K, Ma H S. Lab Chip, 2012, 12: 2369.
[69] Kim M S, Sim T S, Kim Y J, Kim S S, Jeong H, Park J M, Moon H S, Kim S I, Gurel O, Lee S S, Lee J G, Park J C. Lab Chip, 2012, 12: 2874.
[70] Chen X, Cui D F, Zhang L L. Chin. Sci. Bull., 2009, 54: 324.
[71] Tachi T, Kaji N, Tokeshi M, Baba Y. Anal Chem., 2009, 81: 3194.
[72] Van Delinder V, Groisman A. Anal. Chem., 2007, 79: 2023.
[73] Sethu P, Sin A, Toner M. Lab Chip, 2006, 6: 83.
[74] Murthy S K, Sethu P, Vunjak-Novakovic G, Toner M, Radisic M. Biomed. Microdevices, 2006, 8: 231.
[75] Lee D, Sukumar P, Mahyuddin A, Choolani M, Xu G L. J. Chromatogr. A, 2010, 1217: 1862.
[76] Geng Z X, Ju Y R, Wang W, Li Z H. Sens. Actuators B, 2013, 180: 122.
[77] Geng Z, Xu Z, Wang W, Su W, Li Z. 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT 2010) (Eds. Tang T A, Jiang Y L). Shanghai: IEEE, 2010. 1474
[78] Ju Y, Geng Z, Wang Q, Li Z. Proceedings of the Sixteenth International Conference on Miniaturized Systems for Chemistry and Life Sciences (μTAS 2012) (Eds. Fujii T, Hibara A, Takeuchi S, et al.). Okinawa: 2012. 1102
[79] Desitter I, Guerrouahen B S, Benali-Furet N, Wechsler J, Janne P A, Kuang Y A, Yanagita M, Wang L L, Berkowitz J A, Distel R J, Cayre Y E. Anticancer Res., 2011, 31: 427.
[80] Hou J M, Krebs M, Ward T, Sloane R, Priest L, Hughes A, Clack G, Ranson M, Blackhall F, Dive C. Am. J. Pathol., 2011, 178: 989.
[81] De Giorgi V, Pinzani P, Salvianti F, Panelos J, Paglierani M, Janowska A, Grazzini M, Wechsler J, Orlando C, Santucci M, Lotti T, Pazzagli M, Massi D. J. Invest. Dermatol., 2010, 130: 2440.
[82] Vona G, Sabile A, Louha M, Sitruk V, Romana S, Schutze K, Capron F, Franco D, Pazzagli M, Vekemans M, Lacour B, Brechot C, Paterlini-Brechot P. Am. J. Pathol., 2000, 156: 57.
[83] Pinzani P, Salvadori B, Simi L, Bianchi S, Distante V, Cataliotti L, Pazzagli M, Orlando C. Hum. Pathol., 2006, 37: 711.
[84] Rostagno P, Moll J L, Bisconte J C, Caldani C. Anticancer Res., 1997, 17: 2481.
[85] 刘大渔(Liu D Y), 严伟(Yan W), 张琼(Zhang Q), 马薇(Ma W), 梁广铁(Liang G T), Lee Y K.分子诊断与治疗杂志(Journal of Molecular Diagnostics and Therapy), 2012, 4(06): 366.
[86] Zheng S, Lin H, Liu J Q, Balic M, Datar R, Cote R J, Tai Y C. J. Chromatogr. A, 2007, 1162: 154.
[87] Lin H K, Zheng S Y, Williams A J, Balic M, Groshen S, Scher H I, Fleisher M, Stadler W, Datar R H, Tai Y C, Cote R J. Clin. Cancer Res., 2010, 16: 5011.
[88] Zheng S Y, Lin H K, Lu B, Williams A, Datar R, Cote R J, Tai Y C. Biomed. Microdevices, 2011, 13: 203.
[89] Xu T, Lu B, Tai Y C, Goldkorn A. Cancer Res., 2010, 70: 6420.
[90] Huang N T, Chen W Q, Oh B R, Cornell T T, Shanley T P, Fu J P, Kurabayashi K. Lab Chip, 2012, 12: 4093.
[91] Chen W Q, Huang N T, Oh B, Lam R H W, Fan R, Cornell T T, Shanley T P, Kurabayashi K, Fu J P. Adv. Healthcare Mater., 2013, 2: 965.
[92] Lim L S, Hu M, Huang M C, Cheong W C, Gan A T L, Looi X L, Leong S M, Koay E S C, Li M H. Lab Chip, 2012, 12: 4388.
[93] Hosokawa M, Asami M, Nakamura S, Yoshino T, Tsujimura N, Takahashi M, Nakasono S, Tanaka T, Matsunaga T. Biotechnol. Bioeng., 2012, 109: 2017.
[94] Hosokawa M, Hayata T, Fukuda Y, Arakaki A, Yoshino T, Tanaka T, Matsunaga T. Anal. Chem., 2010, 82: 6629.
[95] Didar T F, Li K B, Tabrizian M, Veres T. Lab Chip, 2013, 13: 2615.
[96] Songjaroen T, Dungchai W, Chailapakul O, Henry C S, Laiwattanapaisal W. Lab Chip, 2012, 12: 3392.
[97] Vella S J, Beattie P, Cademartiri R, Laromaine A, Martinez A W, Phillips S T, Mirica K A, Whitesides G M. Anal. Chem., 2012, 84: 2883.
[98] Kuo J S, Zhao Y X, Schiro P G, Ng L Y, Lim D S W, Shelby J P, Chiu D T. Lab Chip, 2010, 10: 837.
[99] Roda B, Zattoni A, Reschiglian P, Moon M H, Mirasoli M, Michelini E, Roda A. Anal. Chim. Acta, 2009, 635: 132.
[100] Rambaldi D C, Reschiglian P, Zattoni A. Anal. Bioanal. Chem., 2011, 399: 1439.
[101] Vykoukal J, Vykoukal D M, Freyberg S, Alt E U, Gascoyne P R C. Lab Chip, 2008, 8: 1386.
[102] Wang X B, Yang J, Huang Y, Vykoukal J, Becker F F, Gascoyne P R C. Anal. Chem., 2000, 72: 832.
[103] Gascoyne P R C, Noshari J, Anderson T J, Becker F F. Electrophoresis, 2009, 30: 1388.
[104] Shim S, Gascoyne P, Noshari J, Hale K S. Integr. Biol., 2011, 3: 850.
[105] Giddings J C. Science, 1993, 260: 1456.
[106] Yamada M, Nakashima M, Seki M. Anal. Chem., 2004, 76: 5465.
[107] Takagi J, Yamada M, Yasuda M, Seki M. Lab Chip, 2005, 5: 778.
[108] Yamada M, Seki M. Lab Chip, 2005, 5: 1233.
[109] Kersaudy-Kerhoas M, Dhariwal R, Desmulliez M P Y, Jouvet L. Microfluid. Nanofluid., 2010, 8: 105.
[110] Yamada M, Kano K, Tsuda Y, Kobayashi J, Yamato M, Seki M, Okano T. Biomed. Microdevices, 2007, 9: 637.
[111] Kim M, Jung S M, Lee K H, Kang Y J, Yang S. Artif. Organs, 2010, 34: 996.
[112] Sethu P, Anahtar M, Moldawer L L, Tompkins R G, Toner M. Anal. Chem., 2004, 76: 6247.
[113] Sethu P, Moldawer L L, Mindrinos M N, Scumpia P O, Tannahill C L, Wilhelmy J, Efron P A, Brownstein B H, Tompkins R G, Toner M. Anal. Chem., 2006, 78: 5453.
[114] Choi S, Park J K. Lab Chip, 2007, 7: 890.
[115] Choi S, Song S, Choi C, Park J K. Lab Chip, 2007, 7: 1532.
[116] Choi S, Ku T, Song S, Choi C, Park J K. Lab Chip, 2011, 11: 413.
[117] Bernate J A, Liu C, Lagae L, Konstantopoulos K, Drazer G. Lab Chip, 2013, 13: 1086.
[118] Choi S, Song S, Choi C, Park J K. Small, 2008, 4: 634.
[119] Huang L R, Cox E C, Austin R H, Sturm J C. Science, 2004, 304: 987.
[120] Inglis D W, Davis J A, Austin R H, Sturm J C. Lab Chip, 2006, 6: 655.
[121] Inglis D W. Appl. Phys. Lett., 2009, 94: 013510.
[122] Long B R, Heller M, Beech J P, Linke H, Bruus H, Tegenfeldt J O. Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2008, 78: 046304.
[123] Beech J P, Tegenfeldt J O. Lab Chip, 2008, 8: 657.
[124] Zheng S, Tai Y C, Kasdan H. Conf. Proc. IEEE Eng. Med. Biol. Soc., 2005, 1: 1024.
[125] Davis J A, Inglis D W, Morton K J, Lawrence D A, Huang L R, Chou S Y, Sturm J C, Austin R H. Proc. Natl. Acad. Sci. U. S. A., 2006, 103: 14779.
[126] Inglis D W, Lord M, Nordon R E. J. Micromech. Microeng., 2011, 21: 054024.
[127] Beech J P, Holm S H, Adolfsson K, Tegenfeldt J O. Lab Chip, 2012, 12: 1048.
[128] Huang R, Barber T A, Schmidt M A, Tompkins R G, Toner M, Bianchi D W, Kapur R, Flejter W L. Prenatal Diagn., 2008, 28: 892.
[129] Holm S H, Beech J P, Barrett M P, Tegenfeldt J O. Lab Chip, 2011, 11: 1326.
[130] Loutherback K, Chou K S, Newman J, Puchalla J, Austin R H, Sturm J C. Microfluid. Nanofluid., 2010, 9: 1143.
[131] Liu Z B, Huang F, Du J H, Shu W L, Feng H T, Xu X P, Chen Y. Biomicrofluidics, 2013, 7: 011801.
[132] Liu Z B, Zhang W, Huang F, Feng H T, Shu W L, Xu X P, Chen Y. Biosens. Bioelectron., 2013, 47: 113.
[133] Loutherback K, D’Silva J, Liu L, Wu A, Austin R H, Sturm J C. AIP Adv., 2012, 2: 042107.
[134] Zeming K K, Ranjan S, Zhang Y. Nat. Commun., 2013, 4: 1625.
[135] Ranjan S, Zeming K K, Jureen R, Fisher D, Zhang Y. Lab Chip, 2014, 14: 4250.
[136] Inglis D W, Davis J A, Zieziulewicz T J, Lawrence D A, Austin R H, Sturm J C. J. Immunol. Methods, 2008, 329: 151.
[137] Morton K J, Loutherback K, Inglis D W, Tsui O K, Sturm J C, Chou S Y, Austin R H. Lab Chip, 2008, 8: 1448.
[138] Ho B P, Leal L G. J. Fluid Mech., 1974, 65: 365.
[139] Di Carlo D, Edd J F, Humphry K J, Stone H A, Toner M. Phys. Rev. Lett., 2009, 102: 094503.
[140] Asmolov E S. J. Fluid Mech., 1999, 381: 63.
[141] Chun B, Ladd A J C. Phys. Fluids, 2006, 18: 031704.
[142] Segre G, Silberberg A. Nature, 1961, 189: 209.
[143] Choi Y S, Lee S J. Microfluid. Nanofluid., 2010, 9: 819.
[144] Di Carlo D, Irimia D, Tompkins R G, Toner M. Proc. Natl. Acad. Sci. U. S. A., 2007, 104: 18892.
[145] Kim Y W, Yoo J Y. J. Micromech. Microeng., 2008, 18: 065015.
[146] Gossett D R, di Carlo D. Anal. Chem., 2009, 81: 8459.
[147] Bhagat A A S, Kuntaegowdanahalli S S, Papautsky I. Phys. Fluids, 2008, 20: 101702.
[148] Mach A J, di Carlo D. Biotechnol. Bioeng., 2010, 107: 302.
[149] Bhagat A A S, Kuntaegowdanahalli S S, Papautsky I. Microfluid. Nanofluid., 2009, 7: 217.
[150] Hur S C, Tse H T K, di Carlo D. Lab Chip, 2010, 10: 274.
[151] Hansson J, Karlsson J M, Haraldsson T, Brismar H, van der Wijngaart W, Russom A. Lab Chip, 2012, 12: 4644.
[152] Di Carlo D. Lab Chip, 2009, 9: 3038.
[153] R D W. Philos. Mag., 1927, 20: 208.
[154] Berger S A, Talbot L, Yao L S. Annu. Rev. Fluid Mech., 1983, 15: 461.
[155] Yoon D H, Ha J B, Bahk Y K, Arakawa T, Shoji S, Go J S. Lab Chip, 2009, 9: 87.
[156] Oozeki N, Ookawara S, Ogawa K, Lob P, Hessel V. AIChE J., 2009, 55: 24.
[157] Ookawara S, Oozeki N, Ogawa K, Lob P, Hessel V. Chem. Eng. Process., 2010, 49: 697.
[158] Oakey J, Applegate R W, Arellano E, di Carlo D, Graves S W, Toner M. Anal. Chem., 2010, 82: 3862.
[159] Di Carlo D, Edd J F, Irimia D, Tompkins R G, Toner M. Anal. Chem., 2008, 80: 2204.
[160] Bhagat A A S, Kuntaegowdanahalli S S, Kaval N, Seliskar C J, Papautsky I. Biomed. Microdevices, 2010, 12: 187.
[161] Bhagat A A S, Kuntaegowdanahalli S S, Papautsky I. Lab Chip, 2008, 8: 1906.
[162] Russom A, Gupta A K, Nagrath S, di Carlo D, Edd J F, Toner M. New J. Phys., 2009, 11: 075025.
[163] Seo J, Lean M H, Kole A. J. Chromatogr. A, 2007, 1162: 126.
[164] Seo J, Lean M H, Kole A. Appl. Phys. Lett., 2007, 91: 033901.
[165] Wu Z G, Willing B, Bjerketorp J, Jansson J K, Hjort K. Lab Chip, 2009, 9: 1193.
[166] Zhang X B, Wu Z Q, Wang K, Zhu J, Xu J J, Xia X H, Chen H Y. Anal. Chem., 2012, 84: 3780.
[167] Park J S, Song S H, Jung H I. Lab Chip, 2009, 9: 939.
[168] Park J S, Jung H I. Anal. Chem., 2009, 81: 8280.
[169] Warkiani M E, Tay A K P, Khoo B L, Xu X F, Han J, Lim C T. Lab Chip, 2015, published online, DOI: 10.1039/C4LC01058B.
[170] Bhagat A A S, Hou H W, Li L D, Lim C T, Han J Y. Lab Chip, 2011, 11: 1870.
[171] Hyun K A, Kwon K, Han H, Kim S I, Jung H I. Biosens. Bioelectron., 2013, 40: 206.
[172] Kuntaegowdanahalli S S, Bhagat A A S, Kumar G, Papautsky I. Lab Chip, 2009, 9: 2973.
[173] Nivedita N, Papautsky I. Biomicrofluidics, 2013, 7: 054101.
[174] Lee W C, Shi H, Poon Z Y, Nyan L M, Kaushik T, Shivashankar G V, Chan J K Y, Lim C T, Han J, van Vliet K J. Proc. Natl. Acad. Sci. U. S. A., 2014, 111: E4409.
[175] Warkiani M E, Khoo B L, Tan D S W, Bhagat A A S, Lim W T, Yap Y S, Lee S C, Soo R A, Han J, Lim C T. Analyst, 2014, 139: 3245.
[176] Kim T H, Yoon H J, Stella P, Nagrath S. Biomicrofluidics, 2014, 8: 064117.
[177] Sun J S, Li M M, Liu C, Zhang Y, Liu D B, Liu W W, Hu G Q, Jiang X Y. Lab Chip, 2012, 12: 3952.
[178] Sun J S, Liu C, Li M M, Wang J D, Xianyu Y L, Hu G Q, Jiang X Y. Biomicrofluidics, 2013, 7: 011802.
[179] Guan G F, Wu L D, Bhagat A A S, Li Z R, Chen P C Y, Chao S Z, Ong C J, Han J Y. Sci. Rep., 2013, 3: 01475.
[180] Wu L D, Guan G F, Hou H W, Bhagat A A S, Han J. Anal. Chem., 2012, 84: 9324.
[181] Warkiani M E, Guan G F, Luan K B, Lee W C, Bhagat A A S, Chaudhuri P K, Tan D S W, Lim W T, Lee S C, Chen P C Y, Lim C T, Han J. Lab Chip, 2014, 14: 128.
[182] Goldsmith H L, Cokelet G R, Gaehtgens P. Am. J. Physiol., 1989, 257: H1005.
[183] Zhou R H, Chang H C. J. Colloid Interface Sci., 2005, 287: 647.
[184] Pries A R, Secomb T W, Gaehtgens P. Cardiovasc. Res., 1996, 32: 654.
[185] Goldsmith H L, Spain S. Microvasc. Res., 1984, 27: 204.
[186] Fung Y. Microvasc. Res., 1973, 5: 34.
[187] Schmidschonbein G W, Skalak R, Usami S, Chien S. Microvasc. Res., 1980, 19: 18.
[188] Yen R T, Fung Y C. Am. J. Physiol., 1978, 235: H251.
[189] Browne A W, Ramasamy L, Cripe T P, Ahn C H. Lab Chip, 2011, 11: 2440.
[190] Faivre M, Abkarian M, Bickraj K, Stone H A. Biorheology, 2006, 43: 147.
[191] Sollier E, Rostaing H, Pouteau P, Fouillet Y, Achard J L. Sens. Actuators B, 2009, 141: 617.
[192] Shevkoplyas S S, Yoshida T, Munn L L, Bitensky M W. Anal. Chem., 2005, 77: 933.
[193] Jaggi R D, Sandoz R, Effenhauser C S. Microfluid. Nanofluid., 2007, 3: 47.
[194] Yang S, Undar A, Zahn J D. Lab Chip, 2006, 6: 871.
[195] Fan R, Vermesh O, Srivastava A, Yen B K H, Qin L D, Ahmad H, Kwong G A, Liu C C, Gould J, Hood L, Heath J R. Nat. Biotechnol., 2008, 26: 1373.
[196] Geng Z, Zhang L, Ju Y, Wang W, Li Z. The 15th International Conference on Miniaturized Systems for Chemistry and Life Sciences 2011 (MicroTAS 2011) (Eds. Landers J). Seattle: CBMS, 2011. 224.
[197] Bernard A, Michel B, Delamarche E. Anal. Chem., 2001, 73: 8.
[198] Zhang Z L, Crozatier C, Le Berre M, Chen Y. Microelectron. Eng., 2005, 78/79: 556.
[199] Litvinov S V, Velders M P, Bakker H A M, Fleuren G J, Warnaar S O. J. Cell Biol., 1994, 125: 437.
[200] Kotz K T, Xiao W, Miller-Graziano C, Qian W J, Russom A, Warner E A, Moldawer L L, De A, Bankey P E, Petritis B O, Camp D G, Rosenbach A E, Goverman J, Fagan S P, Brownstein B H, Irimia D, Xu W H, Wilhelmy J, Mindrinos M N, Smith R D, Davis R W, Tompkins R G, Toner M, Injury I H R. Nat. Med. (NY, U. S.), 2010, 16: 1042.
[201] Nagrath S, Sequist L V, Maheswaran S, Bell D W, Irimia D, Ulkus L, Smith M R, Kwak E L, Digumarthy S, Muzikansky A, Ryan P, Balis U J, Tompkins R G, Haber D A, Toner M. Nature, 2007, 450: 1235.
[202] Gleghorn J P, Pratt E D, Denning D, Liu H, Bander N H, Tagawa S T, Nanus D M, Giannakakou P A, Kirby B J. Lab Chip, 2010, 10: 27.
[203] Kurkuri M D, Al-Ejeh F, Shi J Y, Palms D, Prestidge C, Griesser H J, Brown M P, Thierry B. J. Mater. Chem., 2011, 21: 8841.
[204] Wang S T, Wang H, Jiao J, Chen K J, Owens G E, Kamei K I, Sun J, Sherman D J, Behrenbruch C P, Wu H, Tseng H R. Angew. Chem. Int. Ed., 2009, 48: 8970.
[205] Iyer S, Gaikwad R M, Subba-Rao V, Woodworth C D, Sokolov I. Nat. Nanotechnol., 2009, 4: 389.
[206] Hughes A D, Mattison J, Powderly J D, Greene B T, King M R. J. Visualized Exp., 2012, 64: e4248.
[207] Stott S L, Hsu C H, Tsukrov D I, Yu M, Miyamoto D T, Waltman B A, Rothenberg S M, Shah A M, Smas M E, Korir G K, Floyd F P, Gilman A J, Lord J B, Winokur D, Springer S, Irimia D, Nagrath S, Sequist L V, Lee R J, Isselbacher K J, Maheswaran S, Haber D A, Toner M. Proc. Natl. Acad. Sci. U. S. A., 2010, 107: 18392.
[208] Wang S T, Liu K, Liu J A, Yu Z T F, Xu X W, Zhao L B, Lee T, Lee E K, Reiss J, Lee Y K, Chung L W K, Huang J T, Rettig M, Seligson D, Duraiswamy K N, Shen C K F, Tseng H R. Angew. Chem. Int. Ed., 2011, 50: 3084.
[209] Choi S Y, Karp J M, Karnik R. Lab Chip, 2012, 12: 1427.
[210] Bose S, Singh R, Hanewich-Hollatz M, Shen C, Lee C H, Dorfman D M, Karp J M, Karnik R. Sci. Rep., 2013, 3: 02329.
[211] Karnik R, Hong S, Zhang H, Mei Y, Anderson D G, Karp J M, Langer R. Nano Lett., 2008, 8: 1153.
[212] Launiere C, Gaskill M, Czaplewski G, Myung J H, Hong S, Eddington D T. Anal. Chem., 2012, 84: 4022.
[213] Sheng W A, Chen T, Katnath R, Xiong X L, Tan W H, Fan Z H. Anal. Chem., 2012, 84: 4199.
[214] Simone G, Neuzil P, Perozziello G, Francardi M, Malara N, di Fabrizio E, Manz A. Lab Chip, 2012, 12: 1500.
[215] Simone G, Malara N, Trunzo V, Perozziello G, Neuzil P, Francardi M, Roveda L, Renne M, Prati U, Mollace V, Manz A, di Fabrizio E. Small, 2013, 9: 2152.
[216] Padler-Karavani V. Cancer Lett. (NY, U. S.), 2014, 352: 102.
[217] Li P, Gao Y, Pappas D. Anal. Chem., 2012, 84: 8140.
[218] Zhu H, Stybayeva G, Macal M, Ramanculov E, George M D, Dandekar S, Revzin A. Lab Chip, 2008, 8: 2197.
[219] Chen W Q, Weng S N, Zhang F, Allen S, Li X, Bao L W, Lam R H W, Macoska J A, Merajver S D, Fu J P. ACS Nano, 2013, 7: 566.
[220] Gurkan U A, Anand T, Tas H, Elkan D, Akay A, Keles H O, Demirci U. Lab Chip, 2011, 11: 3979.
[221] Gurkan U A, Tasoglu S, Akkaynak D, Avci O, Unluisler S, Canikyan S, MacCallum N, Demirci U. Adv. Healthcare Mater., 2012, 1: 661.
[222] Shah A M, Yu M, Nakamura Z, Ciciliano J, Ulman M, Kotz K, Stott S L, Maheswaran S, Haber D A, Toner M. Anal. Chem., 2012, 84: 3682.
[223] Hou S, Zhao L B, Shen Q L, Yu J H, Ng C, Kong X J, Wu D X, Song M, Shi X H, Xu X C, OuYang W H, He R X, Zhao X Z, Lee T, Brunicardi F C, Garcia M A, Ribas A, Lo R S, Tseng H R. Angew. Chem. Int. Ed., 2013, 52: 3379.
[224] Ariyasu S, Hanaya K, Watanabe E, Suzuki T, Horie K, Hayase M, Abe R, Aoki S. Langmuir, 2012, 28: 13118.
[225] Lustberg M, Jatana K R, Zborowski M, Chalmers J J. Recent Results Cancer Res., 2012, 195: 97.
[226] Hyun K A, Lee T Y, Lee S H, Jung H L. Biosens. Bioelectron., 2015, 67: 86.
[227] Santisteban M, Reiman J M, Asiedu N K, Behrens M D, Nassar A, Kalli K R, Haluska P, Ingle J N, Hartmann L C, Manjili M H, Radisky D C, Ferrone S, Knutson K L. Cancer Res., 2009, 69: 2887.
[228] Frederick B A, Helfrich B A, Coldren C D, Zheng D, Chan D, Bunn P A, Raben D. Mol. Cancer Ther., 2007, 6: 1683.
[229] Challen G A, Boles N, Lin K K Y, Goodell M A. Cytometry, Part A, 2009, 75A: 14.
[230] Mavrou A, Kouvidi E, Antsaklis A, Souka A, Tzeli S K, Kolialexi A. Prenatal Diagn., 2007, 27: 150.
[231] Van der Gun B T F, Melchers L J, Ruiters M H J, de Leij L F M H, McLaughlin P M J, Rots M G. Carcinogenesis, 2010, 31: 1913.
[232] Kang K H, Kang Y, Xuan X, Li D. Electrophoresis, 2006, 27: 694.
[233] Iliescu C, Xu G L, Loe F C, Ong P L, Tay F E H. Electrophoresis, 2007, 28: 1107.
[234] Patel S, Showers D, Vedantam P, Tzeng T R, Qian S Z, Xuan X C. Biomicrofluidics, 2012, 6: 034102.
[235] Meighan M M, Staton S J R, Hayes M A. Electrophoresis, 2009, 30: 852.
[236] Khoshmanesh K, Nahavandi S, Baratchi S, Mitchell A, Kalantar-zadeh K. Biosens. Bioelectron., 2011, 26: 1800.
[237] Cemazar J, Miklavcic D, Kotnik T. Inform. MIDEM J. Microelect. Elect. Compon. Mater., 2013, 43: 143.
[238] Martinez-Duarte R. Electrophoresis, 2012, 33: 3110.
[239] Pethig R, Menachery A, Pells S, de Sousa P. J. Biomed. Biotechnol., 2010, 2010: 182581.
[240] Zhang C, Khoshmanesh K, Mitchell A, Kalantar-zadeh K. Anal. Bioanal. Chem., 2010, 396: 401.
[241] Pethig R. Biomicrofluidics, 2010, 4: 022811.
[242] Iliescu C, Xu G L, Samper V, Tay F E H. J. Micromech. Microeng., 2005, 15: 494.
[243] Flanagan L A, Lu J, Wang L, Marchenko S A, Jeon N L, Lee A P, Monuki E S. Stem Cells (Durham, NC, U. S.), 2008, 26: 656.
[244] Cheng I F, Chang H C, Hou D, Chang H C. Biomicrofluidics, 2007, 1: 021503.
[245] Iliescu C, Tresset G, Xu G L. Biomicrofluidics, 2009, 3: 044104.
[246] Gagnon Z, Mazur J, Chang H C. Biomicrofluidics, 2009, 3: 044108.
[247] Gascoyne P R C, Vykoukal J. Electrophoresis, 2002, 23: 1973.
[248] Hughes M P. Electrophoresis, 2002, 23: 2569.
[249] Becker F F, Wang X B, Huang Y, Pethig R, Vykoukal J, Gascoyne P R C. Proc. Natl. Acad. Sci. U. S. A., 1995, 92: 860.
[250] Sabuncu A C, Liu J A, Beebe S J, Beskok A. Biomicrofluidics, 2010, 4: 021101.
[251] Vykoukal D M, Gascoyne P R C, Vykoukal J. Integr. Biol., 2009, 1: 477.
[252] Wu L Q, Yung L Y L, Lim K M. Biomicrofluidics, 2012, 6: 014113.
[253] Holmes D, Green N G, Morgan H. IEEE Eng. Med. Biol. Mag., 2003, 22: 85.
[254] Gao J, Riahi R, Sin M L Y, Zhang S F, Wong P K. Analyst, 2012, 137: 5215.
[255] Doh I, Cho Y H. Sens. Actuators A, 2005, 121: 59.
[256] Hu X Y, Bessette P H, Qian J R, Meinhart C D, Daugherty P S, Soh H T. Proc. Natl. Acad. Sci. U. S. A., 2005, 102: 15757.
[257] Alazzam A, Stiharu I, Bhat R, Meguerditchian A N. Electrophoresis, 2011, 32: 1327.
[258] Han K H, Han S I, Frazier A B. Lab Chip, 2009, 9: 2958.
[259] Gupta V, Jafferji I, Garza M, Melnikova V O, Hasegawa D K, Pethig R, Davis D W. Biomicrofluidics, 2012, 6: 024133.
[260] An J, Lee J, Lee S H, Park J, Kim B. Anal. Bioanal. Chem., 2009, 394: 801.
[261] Yang F, Yang X M, Jiang H, Bulkhaults P, Wood P, Hrushesky W, Wang G R. Biomicrofluidics, 2010, 4: 013204.
[262] Alshareef M, Metrakos N, Perez E J, Azer F, Yang F, Yang X M, Wang G R. Biomicrofluidics, 2013, 7: 011803.
[263] Jen C P, Chang H H. Biomicrofluidics, 2011, 5: 034101.
[264] Cheng J, Sheldon E L, Wu L, Heller M J, O'Connell J P. Anal. Chem., 1998, 70: 2321.
[265] Wang M W. Electrophoresis, 2012, 33: 780.
[266] Jubery T Z, Dutta P. Electrophoresis, 2013, 34: 643.
[267] Vahey M D, Voldman J. Anal. Chem., 2008, 80: 3135.
[268] Vahey M D, Voldman J. Anal. Chem., 2009, 81: 2446.
[269] Jen C P, Chen W F. Biomicrofluidics, 2011, 5: 044105.
[270] Iliescu C, Xu G L, Ong P L, Leck K J. J. Micromech. Microeng., 2007, 17: S128.
[271] Hagedorn R, Fuhr G, Muller T, Gimsa J. Electrophoresis, 1992, 13: 49.
[272] Bunthawin S, Wanichapichart P, Tuantranont A, Coster H G L. Biomicrofluidics, 2010, 4: 014102.
[273] Cheng I F, Froude V E, Zhu Y X, Chang H C, Chang H C. Lab Chip, 2009, 9: 3193.
[274] Cen E G, Dalton C, Li Y L, Adamia S, Pilarski L M, Kaler K V I S. J. Microbiol. Methods, 2004, 58: 387.
[275] Huang S B, Wu M H, Lin Y H, Hsieh C H, Yang C L, Lin H C, Tseng C P, Lee G B. Lab Chip, 2013, 13: 1371.
[276] Huang S B, Liu S L, Li J T, Wu M H. Int. J. Autom. Smart Technol., 2014, 4: 83.
[277] Chiou P Y, Ohta A T, Wu M C. Nature, 2005, 436: 370.
[278] Catterall W A. Annu. Rev. Biochem., 1995, 64: 493.
[279] Tsong T Y. Biochim. Biophys. Acta, 1992, 1113: 53.
[280] Voldman J. Annu. Rev. Biomed. Eng., 2006, 8: 425.
[281] Ramos A, Morgan H, Green N G, Castellanos A. J. Phys. D: Appl. Phys., 1998, 31: 2338.
[282] Tay F E H, Yu L M, Pang A J, Iliescu C. Electrochim. Acta, 2007, 52: 2862.
[283] Iliescu C, Yu L M, Xu G L, Tay F E H. J. Microelectromech. Syst., 2006, 15: 1506.
[284] 沈玉勤(Shen Y Q), 姚波(Yao B), 方群(Fang Q). 化学进展(Progress in Chemistry), 2010, 22(1): 133.
[285] Zborowski M, Ostera G R, Moore L R, Milliron S, Chalmers J J, Schechter A N. Biophys. J., 2003, 84: 2638.
[286] Nam J, Huang H, Lim H, Lim C, Shin S. Anal. Chem., 2013, 85: 7316.
[287] Han K H, Frazier A B. Lab Chip, 2006, 6: 265.
[288] Han K H, Frazier A B. J. Microelectromech. Syst., 2005, 14: 1422.
[289] Han K H, Frazier A B. J. Appl. Phys., 2004, 96: 5797.
[290] Jung J, Han K H. Appl. Phys. Lett., 2008, 93: 223902.
[291] Furlani E P. J. Phys. D: Appl. Phys., 2007, 40: 1313.
[292] Huang Y Y, Hoshino K, Chen P, Wu C H, Lane N, Huebschman M, Liu H Y, Sokolov K, Uhr J W, Frenkel E P, Zhang J X J. Biomed. Microdevices, 2013, 15: 673.
[293] Kang J H, Krause S, Tobin H, Mammoto A, Kanapathipillai M, Ingber D E. Lab Chip, 2012, 12: 2175.
[294] Casavant B P, Guckenberger D J, Berry S M, Tokar J T, Lang J M, Beebe D J. Lab Chip, 2013, 13: 391.
[295] Casavant B P, Strotman L N, Tokar J J, Thiede S M, Traynor A M, Ferguson J S, Lang J M, Beebe D J. Lab Chip, 2014, 14: 99.
[296] Pamme N, Eijkel J C T, Manz A. J. Magn. Magn. Mater., 2006, 307: 237.
[297] Smistrup K, Lund-Olesen T, Hansen M F, Tang P T. J. Appl. Phys., 2006, 99: 08P102.
[298] Kim S, Han S I, Park M J, Jeon C W, Joo Y D, Choi I H, Han K H. Anal. Chem., 2013, 85: 2779.
[299] Issadore D, Shao H L, Chung J, Newton A, Pittet M, Weissleder R, Lee H. Lab Chip, 2011, 11: 147.
[300] Sivagnanam V, Song B, Vandevyver C, Bunzli J C G, Gijs M A M. Langmuir, 2010, 26: 6091.
[301] Saliba A E, Saias L, Psychari E, Minc N, Simon D, Bidard F C, Mathiot C, Pierga J Y, Fraisier V, Salamero J, Saada V, Farace F, Vielh P, Malaquin L, Viovy J L. Proc. Natl. Acad. Sci. U. S. A., 2010, 107: 14524.
[302] Horak D, Svobodova Z, Autebert J, Coudert B, Plichta Z, Kralovec K, Bilkova Z, Viovy J L. J. Biomed. Mater. Res., Part A, 2013, 101: 23.
[303] Plouffe B D, Mahalanabis M, Lewis L H, Klapperich C M, Murthy S K. Anal. Chem., 2012, 84: 1336.
[304] Choi J W, Liakopoulos T M, Ahn C H. Biosens. Bioelectron., 2001, 16: 409.
[305] Ramadan Q, Samper V, Poenar D, Yu C. J. Magn. Magn. Mater., 2004, 281: 150.
[306] Yang L Y, Lang J C, Balasubramanian P, Jatana K R, Schuller D, Agrawal A, Zborowski M, Chalmers J J. Biotechnol. Bioeng., 2009, 102: 521.
[307] Zborowski M, Chamers J J. Anal. Chem., 2011, 83: 8050.
[308] Laurell T, Petersson F, Nilsson A. Chem. Soc. Rev., 2007, 36: 492.
[309] Wiklund M, Hertz H M. Lab Chip, 2006, 6: 1279.
[310] Shi J J, Huang H, Stratton Z, Huang Y P, Huang T J. Lab Chip, 2009, 9: 3354.
[311] Augustsson P, Magnusson C, Nordin M, Lilja H, Laurell T. Anal. Chem., 2012, 84: 7954.
[312] Petersson F, Nilsson A, Holm C, Jonsson H, Laurell T. Analyst, 2004, 129: 938.
[313] Petersson F, Nilsson A, Holm C, Jonsson H, Laurell T. Lab Chip, 2005, 5: 20.
[314] Lenshof A, Ahmad-Tajudin A, Jaras K, Sward-Nilsson A M, Aberg L, Marko-Varga G, Malm J, Lilja H, Laurell T. Anal. Chem., 2009, 81: 6030.
[315] Hawkes J J, Coakley W T. Sens. Actuators B, 2001, 75: 213.
[316] Nordin M, Laurell T. Lab Chip, 2012, 12: 4610.
[317] Kapishnikov S, Kantsler V, Steinberg V. J. Stat. Mech.: Theory Exp., 2006, 2006: P01012.
[318] Petersson F, Aberg L, Sward-Nilsson A M, Laurell T. Anal. Chem., 2007, 79: 5117.
[319] Dykes J, Lenshof A, Astrand-Grundstrom I B, Laurell T, Scheding S. PLoS One, 2011, 6: e23074.
[320] Gupta S, Feke D L, Manas-Zloczower I. Chem. Eng. Sci., 1995, 50: 3275.
[321] Burguillos M A, Magnusson C, Nordin M, Lenshof A, Augustsson P, Hansson M J, Elmer E, Lilja H, Brundin P, Laurell T, Deierborg T. PLoS One, 2013, 8: e64233.
[322] Evander M, Johansson L, Lilliehorn T, Piskur J, Lindvall M, Johansson S, Almqvist M, Laurell T, Nilsson J. Anal. Chem., 2007, 79: 2984.
[323] Ashkin A, Dziedzic J M. Ber. Bunsen. Phys. Chem., 1989, 93: 254.
[324] Ashkin A, Dziedzic J M, Yamane T. Nature, 1987, 330: 769.
[325] Kaneta T, Makihara J, Imasaka T. Anal. Chem., 2001, 73: 5791.
[326] Li M Q, Xu J, Romero-Gonzalez M, Banwart S A, Huang W E. Curr. Opin. Biotechnol., 2012, 23: 56.
[327] Liberale C, Cojoc G, Bragheri F, Minzioni P, Perozziello G, La Rocca R, Ferrara L, Rajamanickam V, di Fabrizio E, Cristiani I. Sci. Rep., 2013, 3: 01258.
[328] Ohta A T, Chiou P Y, Phan H L, Sherwood S W, Yang J M, Lau A N K, Hsu H Y, Jamshidi A, Wu M C. IEEE J. Sel. Top. Quantum Electron., 2007, 13: 235.
[329] Shah G J, Ohta A T, Chiou E P Y, Wu M C, Kim C J. Lab Chip, 2009, 9: 1732.
[330] MacDonald M P, Spalding G C, Dholakia K. Nature, 2003, 426: 421.
[331] Milne G, Rhodes D, MacDonald M, Dholakia K. Opt. Lett., 2007, 32: 1144.
[332] Guck J, Schinkinger S, Lincoln B, Wottawah F, Ebert S, Romeyke M, Lenz D, Erickson H M, Ananthakrishnan R, Mitchell D, Kas J, Ulvick S, Bilby C. Biophys. J., 2005, 88: 3689.
[333] Tanaka T, Ishikawa T, Numayama-Tsuruta K, Imai Y, Ueno H, Matsuki N, Yamaguchi T. Lab Chip, 2012, 12: 4336.
[334] Parichehreh V, Medepallai K, Babbarwal K, Sethu P. Lab Chip, 2013, 13: 892.
[335] Moon H S, Kwon K, Hyun K A, Sim T S, Park J C, Lee J G, Jung H I. Biomicrofluidics, 2013, 7: 014105.
[336] Sim T S, Kwon K, Park J C, Lee J G, Jung H I. Lab Chip, 2011, 11: 93.
[337] Moon H S, Kwon K, Kim S I, Han H, Sohn J, Lee S, Jung H I. Lab Chip, 2011, 11: 1118.
[338] Shen S F, Ma C, Zhao L, Wang Y L, Wang J C, Xu J, Li T B, Pang L, Wang J Y. Lab Chip, 2014, 14: 2525.
[339] Bhagat A A S, Hou H W, Huang S, Lim C T, Han J. The 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences 2010 (MicroTAS 2010) (Eds. Verpoorte S). Groningen: CBMS, 2010. 1391.
[340] Hou H W, Warkiani M E, Khoo B L, Li Z R, Soo R A, Tan D S W, Lim W T, Han J, Bhagat A A S, Lim C T. Sci. Rep., 2013, 3: 01259.
[341] Ozkumur E, Shah A M, Ciciliano J C, Emmink B L, Miyamoto D T, Brachtel E, Yu M, Chen P I, Morgan B, Trautwein J, Kimura A, Sengupta S, Stott S L, Karabacak N M, Barber T A, Walsh J R, Smith K, Spuhler P S, Sullivan J P, Lee R J, Ting D T, Luo X, Shaw A T, Bardia A, Sequist L V, Louis D N, Maheswaran S, Kapur R, Haber D A, Toner M. Sci. Transl. Med., 2013, 5: 3005616.
[342] Sha J J, Ni Z H, Liu L, Yi H, Chen Y F. Nanotechnology, 2011, 22: 175304.
[343] Xiang N, Yi H, Chen K, Wang S F, Ni Z H. J. Micromech. Microeng., 2013, 23: 025016.
[1] Muya Zhang, Jiaqi Liu, Wang Chen, Liqiang Wang, Jie Chen, Yi Liang. The Mechanism of Protein Condensation in Neurodegenerative Diseases [J]. Progress in Chemistry, 2022, 34(7): 1619-1625.
[2] Xiaoqing Yin, Weihao Chen, Boyuan Deng, Jialu Zhang, Wanqi Liu, Kaiming Peng. The Application and Mechanism of Superwetting Membrane in Demulsification of Oil-in-Water Emulsions [J]. Progress in Chemistry, 2022, 34(3): 580-592.
[3] Baoyou Yan, Xufei Li, Weiqiu Huang, Xinya Wang, Zhen Zhang, Bing Zhu. Synthesis of Metal-Organic Framework-NH2/CHO and Its Application in Adsorption Separation [J]. Progress in Chemistry, 2022, 34(11): 2417-2431.
[4] Wu Mingming, Lin Kaige, Aydengul Muhyati, Chen Cheng. Research on the Construction and Application of Superwetting Materials with Photothermal Effect [J]. Progress in Chemistry, 2022, 34(10): 2302-2315.
[5] Jiali Wang, Ling Zhu, Chen Wang, Shengbin Lei, Yanlian Yang. Nanotechnology for Detection of Circulating Tumor Cells and Extracellular Vesicles [J]. Progress in Chemistry, 2022, 34(1): 178-197.
[6] Xiansheng Luo, Hanlin Deng, Jiangying Zhao, Zhihua Li, Chunpeng Chai, Muhua Huang. Synthesis and Application of Holey Nitrogen-Doped Graphene Material(C2N) [J]. Progress in Chemistry, 2021, 33(3): 355-367.
[7] Dechao Wang, Yangyang Xin, Xiaoqian Li, Dongdong Yao, Yaping Zheng. Porous liquids and Their Applications in Gas Capture and Separation [J]. Progress in Chemistry, 2021, 33(10): 1874-1886.
[8] Shan Guo, Xiang Zhou. Detection of Circulating Tumor Cell in Vivo:Technology and Application [J]. Progress in Chemistry, 2021, 33(1): 1-12.
[9] Bo Li, Lijian Ma, Ning Luo, Shoujian Li, Yunming Chen, Jinsong Zhang. Extraction and Separation of Uranium via Solid Phase Extraction [J]. Progress in Chemistry, 2020, 32(9): 1316-1333.
[10] Fengfeng Gao, Yanyan Yang, Xiao Du, Xiaogang Hao, Guoqing Guan, Bing Tang. Electrically Switched Ion Membrane for Ion Selective Separation and Recovery: From ESIX to ESIPM [J]. Progress in Chemistry, 2020, 32(9): 1344-1351.
[11] Guohua Xu, Kai Cheng, Chen Wang, Conggang Li. Multi-Hierarchical Structural Characterization of Biological Condensed Matters [J]. Progress in Chemistry, 2020, 32(8): 1231-1239.
[12] Runtian Wang, Chunli Liu, Zhenbin Chen. Imprinted Composite Membranes [J]. Progress in Chemistry, 2020, 32(7): 989-1002.
[13] Xiaojian Li, Haijun Zhang, Saisai Li, Jun Zhang, Quanli Jia, Shaowei Zhang. Preparation of Superhydrophilic and Oleophobic Materials and Their Oil-Water Separation Properties [J]. Progress in Chemistry, 2020, 32(6): 851-860.
[14] Yang Liu, Xinbo Zhang, Yingcan Zhao. Two-Dimensional MoS2 Nanomaterials and Applications in Water Treatment [J]. Progress in Chemistry, 2020, 32(5): 642-655.
[15] Heli Wang, Meihua Zhu, Li Liang, Ting Wu, Fei Zhang, Xiangshu Chen. Preparation and Gas Separation Performance of SSZ-13 Zeolite Membranes [J]. Progress in Chemistry, 2020, 32(4): 423-433.