中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (7): 785-793 DOI: 10.7536/PC150111 Previous Articles   Next Articles

• Review and comments •

Gold Nanorods: Synthesis, Growth Mechanism and Purification

Lu Wensheng*, Wang Haifei, Zhang Jianping, Jiang Long*   

  1. Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 20903106, 21321063, 21161130521).
PDF ( 4719 ) Cited
Export

EndNote

Ris

BibTeX

Gold nanorods have caused much attention due to their unique physical properties. Nowadays, gold nanorods have created a great promise for their use in nanoelectronic, optical and biomedical applications. By adjustment of experimental conditions, the morphology, size and aspect ratio of gold nanorod can be finely controlled, which finally affect the physical properties of gold nanorods. In this review, the various synthesis methods of gold nanorods, such as template method, electrochemical synthesis method, seeded growth method and even recently developed seedless growth method are summarized. The effects of experimental conditions on the crystal structures and physical properties of gold nanorods are discussed in detail, along with the recent research progress on the growth mechanism of single-crystalline and pentahedrally-twinned nanorods. Finally, general strategies to improve the purity of product are provided.

Contents
1 Introduction
2 Synthesis of gold nanorods
2.1 Template method
2.2 Electrochemical synthesis
2.3 Seeded growth method
2.4 Seedless growth method
3 Crystal structure and growth mechanism
3.1 Crystal structure
3.2 Growth mechanism
4 Purification
5 Conclusion

CLC Number: 

[1] Frens G. Nat. Phys. Sci., 1973, 241 (105): 20.
[2] 葛余俊(Ge Y J), 赤骋(Chi C), 伍蓉(Wu R), 郭霞(Guo X), 张巧(Zhang Q), 杨剑(Yang J). 化学进展(Progress in Chemistry), 2012, 24 (05): 776.
[3] Lin G, Lu W, Cui W, Jiang L. Cryst. Growth Des., 2010, 10 (3): 1118.
[4] Ren F, Wang H, Zhai C, Zhu M, Yue R, Du Y, Yang P, Xu J, Lu W. ACS Appl. Mater. Interfaces, 2014, 6 (5): 3607.
[5] Yang J, Wu J C, Wu Y C, Wang J K, Chen C C. Chem. Phys. Lett., 2005, 416 (4/6): 215.
[6] 陈德皓(Chen D H), 徐常登(Xu C D), 刘子立(Liu Z L), 陈玲(Chen L), 甄春花(Zhen C H), 孙世刚(Sun S G). 化学进展(Progress in Chemistry), 2013, 25 (10): 1667.
[7] Daniel M C, Astruc D. Chem. Rev., 2004, 104 (1): 293.
[8] Murray R W. Chem. Rev., 2008, 108 (7): 2688.
[9] 马占芳(Ma Z F), 田乐(Tian L), 邸静(Di J), 丁腾(Ding T). 化学进展(Progress in Chemistry), 2009, 21 (1): 134.
[10] Shao L, Fang C, Chen H, Man Y C, Wang J, Lin H Q. Nano Lett., 2012, 12 (3): 1424.
[11] Ueno K, Juodkazis S, Mino M, Mizeikis V, Misawa H. J. Phys. Chem. C, 2007, 111 (11): 4180.
[12] Chen H, Shao L, Li Q, Wang J. Chem. Soc. Rev., 2013, 42 (7): 2679.
[13] Vigderman L, Zubarev E R. Chem. Mater., 2013, 25 (8): 1450.
[14] Li N, Zhao P, Astruc D. Angew. Chem. Int. Ed., 2014, 53 (7): 1756.
[15] Xiao J, Li Z, Ye X, Ma Y, Qi L. Nanoscale, 2014, 6 (2): 996.
[16] Banholzer M J, Li S, Ketter J B, Rozkiewicz D I, Schatz G C, Mirkin C A. J. Phys. Chem. C, 2008, 112 (40): 15729.
[17] Cepak V M, Martin C R. J. Phys. Chem. B, 1998, 102 (49): 9985.
[18] Foss C A, Hornyak G L, Stockert J A, Martin C R. J. Phys. Chem., 1994, 98 (11): 2963.
[19] Martin C R. Chem. Mater., 1996, 8 (8): 1739.
[20] Hornyak G L, Patrissi C J, Martin C R. J. Phys. Chem. B, 1997, 101 (9): 1548.
[21] Van der Zande B M I, Böhmer M R, Fokkink L G J, Schönenberger C. J. Phys. Chem. B, 1997, 101 (6): 852.
[22] Van der Zande B M I, Böhmer M R, Fokkink L G J, Schönenberger C. Langmuir, 1999, 16 (2): 451.
[23] Li Z, Kübel C, Pârvulescu V I, Richards R. ACS Nano, 2008, 2 (6): 1205.
[24] Gao C, Zhang Q, Lu Z, Yin Y. J. Am. Chem. Soc., 2011, 133 (49): 19706.
[25] Yu Y Y, Chang S S, Lee C L, Wang C R C. J. Phys. Chem. B, 1997, 101 (34): 6661.
[26] Chang S S, Shih C W, Chen C D, Lai W C, Wang C R C. Langmuir, 1999, 15 (3): 701.
[27] Jana N R, Gearheart L, Murphy C J. Adv. Mater., 2001, 13 (18): 1389.
[28] Nikoobakht B, El-Sayed M A. Chem. Mater., 2003, 15 (10): 1957.
[29] Liu M Z, Guyot-Sionnest P. J. Phys. Chem. B, 2005, 109 (47): 22192.
[30] Sau T K, Murphy C J. Langmuir, 2004, 20 (15): 6414.
[31] Gao J X, Bender C M, Murphy C J. Langmuir, 2003, 19 (21): 9065.
[32] Gou L, Murphy C J. Chem. Mater., 2005, 17 (14): 3668.
[33] Jiang X C, Brioude A, Pileni M P. Colloids Surf. A, 2006, 277 (1/3): 201.
[34] Ye X, Jin L, Caglayan H, Chen J, Xing G, Zheng C, Doan-Nguyen V, Kang Y, Engheta N, Kagan C R, Murray C B. ACS Nano, 2012, 6 (3): 2804.
[35] Ye X, Zheng C, Chen J, Gao Y, Murray C B. Nano Lett., 2013, 13 (2): 765.
[36] Boleininger J, Kurz A, Reuss V, Sonnichsen C. Phys. Chem. Chem. Phys., 2006, 8 (33): 3824.
[37] Lohse S E, Eller J R, Sivapalan S T, Plews M R, Murphy C J. ACS Nano, 2013, 7 (5): 4135.
[38] Jana N R, Gearheart L, Murphy C J. J. Phys. Chem. B, 2001, 105 (19): 4065.
[39] Khanal B P, Zubarev E R. J. Am. Chem. Soc., 2008, 130 (38): 12634.
[40] Jana N R. Small, 2005, 1 (8/9): 875.
[41] Ali M R, Snyder B, El-Sayed M A. Langmuir, 2012, 28 (25): 9807.
[42] Lai J, Zhang L, Niu W, Qi W, Zhao J, Liu Z, Zhang W, Xu G. Nanotechnology, 2014, 25 (12): 125601.
[43] Perez-Juste J, Liz-Marzan L M, Carnie S, Chan D Y C, Mulvaney P. Adv. Funct. Mater., 2004, 14 (6): 571.
[44] Zhang J, Xi C, Feng C, Xia H, Wang D, Tao X. Langmuir, 2014, 30 (9): 2480.
[45] Zijlstra P, Bullen C, Chon J W M, Gu M. J. Phys. Chem. B, 2006, 110 (39): 19315.
[46] Murphy C J, Sau T K, Gole A M, Orendorff C J, Gao J, Gou L, Hunyadi S E, Li T. J. Phys. Chem. B, 2005, 109 (29): 13857.
[47] Koeppl S, Koch F P V, Caseri W, Spolenak R. J. Mater. Chem., 2012, 22 (29): 14594.
[48] Xu X, Zhao Y, Xue X, Huo S, Chen F, Zou G, Liang X J. J. Mater. Chem. A, 2014, 2 (10): 3528.
[49] Zhang L, Xia K, Lu Z, Li G, Chen J, Deng Y, Li S, Zhou F, He N. Chem. Mater., 2014, 26 (5): 1794.
[50] Wang Z L, Gao R P, Nikoobakht B, El-Sayed M A. J. Phys. Chem. B, 2000, 104 (23): 5417.
[51] Wang Z L, Mohamed M B, Link S, El-Sayed M A. Surf. Sci., 1999, 440 (1/2): L809.
[52] Carbó-Argibay E, Rodríguez-González B, Gómez-Graña S, Guerrero-Martínez A, Pastoriza-Santos I, Pérez-Juste J, Liz-Marzán L M. Angew. Chem. Int. Ed., 2010, 49 (49): 9397.
[53] Johnson C J, Dujardin E, Davis S A, Murphy C J, Mann S. J. Mater. Chem., 2002, 12 (6): 1765.
[54] Wu H Y, Huang W L, Huang M H. Cryst. Growth Des., 2007, 7 (4): 831.
[55] Dreaden E C, Alkilany A M, Huang X, Murphy C J, El-Sayed M A. Chem. Soc. Rev., 2012, 41 (7): 2740.
[56] Edgar J A, McDonagh A M, Cortie M B. ACS Nano, 2012, 6 (2): 1116.
[57] Langille M R, Zhang J, Personick M L, Li S, Mirkin C A. Science, 2012, 337 (6097): 954.
[58] Lohse S E, Murphy C J. Chem. Mater., 2013, 25 (8): 1250.
[59] Park K, Drummy L F, Wadams R C, Koerner H, Nepal D, Fabris L, Vaia R A. Chem. Mater., 2013, 25 (4): 555.
[60] Hubert F, Testard F, Spalla O. Langmuir, 2008, 24 (17): 9219.
[61] Langille M R, Personick M L, Zhang J, Mirkin C A. J. Am. Chem. Soc., 2012, 134 (35): 14542.
[62] Personick M L, Langille M R, Zhang J, Mirkin C A. Nano Lett., 2011, 11 (8): 3394.
[63] Nikoobakht B, El-Sayed M A. Langmuir, 2001, 17 (20): 6368.
[64] Grzelczak M, Perez-Juste J, Mulvaney P, Liz-Marzan L M. Chem. Soc. Rev., 2008, 37 (9): 1783.
[65] Garg N, Scholl C, Mohanty A, Jin R. Langmuir, 2010, 26 (12): 10271.
[66] Sau T K, Murphy C J. Philos. Mag., 2007, 87 (14/15): 2143.
[67] Si S, Leduc C, Delville M H, Lounis B. ChemPhysChem, 2012, 13 (1): 193.
[68] Bullen C, Zijlstra P, Bakker E, Gu M, Raston C. Cryst. Growth Des., 2011, 11 (8): 3375.
[69] Kanicky J R, Shah D O. J. Colloid Interface Sci., 2002, 256 (1): 201.
[70] Wang D, Nap R J, Lagzi I, Kowalczyk B, Han S, Grzybowski B A, Szleifer I. J. Am. Chem. Soc., 2011, 133 (7): 2192.
[71] Ye X, Gao Y, Chen J, Reifsnyder D C, Zheng C, Murray C B. Nano Lett., 2013, 13 (5): 2163.
[72] Lohse S E, Burrows N D, Scarabelli L, Liz-Marzán L M, Murphy C J. Chem. Mater., 2014, 26 (1): 34.
[73] Zweifel D A, Wei A. Chem. Mater., 2005, 17 (16): 4256.
[74] Sharma V, Park K, Srinivasarao M. Proc. Natl. Acad. Sci. U. S. A., 2009, 106 (13): 4981.
[75] Wu J, Jia W, Lu W, Jiang L. ACS Appl. Mater. Interfaces, 2012, 4 (12): 6560.
[76] Guo Z, Fan X, Xu L, Lu X, Gu C, Bian Z, Gu N, Zhang J, Yang D. Chem. Commun., 2011, 47 (14): 4180.
[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[3] Xinyue Wang, Kang Jin. Chemical Synthesis of Peptides and Proteins [J]. Progress in Chemistry, 2023, 35(4): 526-542.
[4] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[5] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[6] Yehjun Lim, Yanmei Li. Chemical Synthesis/Semisynthesis of Post-Translational Modified Tau Protein [J]. Progress in Chemistry, 2022, 34(8): 1645-1660.
[7] Meng Wang, He Song, Yewen Li. Three Dimensional Self-Assembled Blue Phase Liquid Crystalline Photonic Crystal [J]. Progress in Chemistry, 2022, 34(8): 1734-1747.
[8] Peng Xu, Biao Yu. Challenges in Chemical Synthesis of Glycans and the Possible Problems Relevant to Condensed Matter Chemistry [J]. Progress in Chemistry, 2022, 34(7): 1548-1553.
[9] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[10] Fangyuan Li, Junhao Li, Yujie Wu, Kaixiang Shi, Quanbing Liu, Hongjie Peng. Design and Preparation of Electrode Nanomaterials with “Yolk-Shell”Structure for Lithium/Sodium-Ion/Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2022, 34(6): 1369-1383.
[11] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[12] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[13] Yi Zeng, Yongsheng Ren, Wenhui Ma, Hui Chen, Shu Zhan, Jing Cao. Boron Removal Method, Technology and Process for Producing Solar Grade Silicon by Metallurgical Method [J]. Progress in Chemistry, 2022, 34(4): 926-949.
[14] Xiuli Shao, Siqi Wang, Xuan Zhang, Jun Li, Ningning Wang, Zheng Wang, Zhongyong Yuan. Fabrication and Application of MFI Zeolite Nanosheets [J]. Progress in Chemistry, 2022, 34(12): 2651-2666.
[15] Baoyou Yan, Xufei Li, Weiqiu Huang, Xinya Wang, Zhen Zhang, Bing Zhu. Synthesis of Metal-Organic Framework-NH2/CHO and Its Application in Adsorption Separation [J]. Progress in Chemistry, 2022, 34(11): 2417-2431.