中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (6): 666-674 DOI: 10.7536/PC150103 Previous Articles   Next Articles

• Supramolecular Chemistry Issue •

Catalytic Application of Iron Corrole Complexes in Organic Synthesis

Zou Huaibo1, Wang Huahua1, Mei Guangquan2, Liu Haiyang*1, Chang Chi-Kwong*3   

  1. 1. Department of Chemistry, South China University of Technology, Guangzhou 510640, China;
    2. Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, Yichun University, Yichun 336000, China;
    3. Department of Chemistry, Michigan State University, E. Lansing, MI 48824, USA
  • Received: Revised: Online: Published:
  • Contact: 10.7536/PC150103 E-mail:chhyliu@scut.edu.cn;changc@msu.edu
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21171057, 21371059, 21261024).
PDF ( 1473 ) Cited
Export

EndNote

Ris

BibTeX

Study on the preparation and catalytic activities of iron corrole has become one of the hot topics of porphyrin chemistry. In this paper, the recent progress about catalytic application of iron corrole in organic synthesis has been reviewed, with an emphasis on the oxidation, cyclopropanation and aziridination of olefin, insertion reactions involving N—H, S—H and C—H bonds, [4+2] cycloaddition as well as copolymerization of epoxides with carbon dioxide. The problems of iron corroles in catalysis and several directions have also been addressed.

Contents
1 Introduction
2 Application of iron-corrole complexes in organic synthesis
2.1 Catalytic oxidation
2.2 Catalytic cyclopropanation
2.3 Catalytic aziridination
2.4 Catalytic insertion reactions involving N—H, S—H and C—H bonds
2.5 Catalytic cycloaddition
2.6 Catalytic copolymerization
3 Conclusion

CLC Number: 

[1] Cuesta L, Sessler J L. Chem. Soc. Rev., 2009, 38: 2716.
[2] (a) Nakamura Y, Aratani N, Osuka A. Chem. Soc. Rev., 2007, 36: 831; (b) Pareek Y, Ravikanth M, Chandrashekar T K. Acc. Chem. Res., 2012, 45: 1801; (c) Zha Q Z, Ding C X, Rui X, Xie Y S. Cryst. Growth Des., 2013, 13: 4583; (d) Wei P C, Zhang K, Li X, Meng D Y, Ögren H, Ou Z P, Ng S, Furuta H, Xie Y S. Angew. Chem. Int. Ed., 2014, 53: 14069; (e) Zha Q Z, Rui X, Wei T T, Xie Y S. Cryst. Eng. Comm., 2014, 16: 7371.
[3] Ethirajan M, Chen Y H, Joshi P, Pandey R K. Chem. Soc. Rev., 2011, 40: 340.
[4] (a) Li L L, Diau E W G. Chem. Soc. Rev., 2013, 42: 291; (b) Wang Y Q, Chen B, Wu W J, Li X, Zhu W H, Tian H, Xie Y S. Angew. Chem. Int. Ed., 2014, 53: 10779; (c) Sun X, Wang Y Q, Li X, Ögren H, Zhu W H, Tian H, Xie Y S. Chem. Commun., 2014, 50: 15609.
[5] (a) Shin J Y, Kim K S, Yoon M C, Lim J M, Yoon Z S, Osuka A, Kim D. Chem. Soc. Rev., 2010, 39: 2751; (b) De la Torre G, Bottari G, Sekita M, Hausmann A, Guldi D M, Torres T. Chem. Soc. Rev., 2013, 42: 8049.
[6] (a) Lu H J, Zhang X P. Chem. Soc. Rev., 2011, 40: 1899; (b) Chan K H, Guan X G, Lo V K Y, Che C M. Angew. Chem. Int. Ed., 2014, 53: 2982; (c) Fackler P, Huber S M, Bach T. J. Am. Chem. Soc., 2012, 134: 12869.
[7] Tanaka T, Osuka A. Chem. Soc. Rev., 2015, 44: 943.
[8] Johnson A W, Kay I T. J. Chem. Soc., 1965, 1620.
[9] (a) Gross Z, Galili N, Saltsman I. Angew. Chem. Int. Ed., 1999, 38: 1427; (b) Gryko D T, Koszarna B. Org. Biomol. Chem., 2003, 1: 350.
[10] (a) Gross Z, Gray H B. Adv. Synth. Catal., 2004, 346: 165; (b) Zdilla M J, Abu-Omar M M. J. Am. Chem. Soc., 2006, 128: 16971; (c) Mahammed A, Gross Z. Angew. Chem. Int. Ed., 2006, 45: 6544; (d) He C L, Ren F L, Zhang X B, Han Z X. Talanta, 2006, 70: 364; (e) Zhang X B, Han Z X, Fang Z H, Shen G L, Yu R Q. Anal. Chim. Acta, 2006, 562: 210; (f) Li C Y, Zhang X B, Han Z X, Ökermark B, Sun L C, Shen G L, Yu R Q. Analyst, 2006, 131: 388; (g) Aviv I, Gross Z. Chem. Commun., 2007, 1987; (h) Paolesse R. Synlett, 2008, 15: 2215; (i) Flamigni L, Gryko D T. Chem. Soc. Rev., 2009, 38: 1635; (j) Aviv-Harel I, Gross Z. Chem. Eur. J., 2009, 15: 8382; (k) Abu-Omar M M. Dalton Trans., 2011, 40: 3435; (l) Liu H Y, Mahmood M H, Qiu S X (Samuel), Chang C K. Coordin. Chem. Rev., 2013, 257: 1306.
[11] (a) Gross Z, Gray H B. Comment. Inorg. Chem., 2006, 27: 61; (b) Rabinovich E, Goldberg I, Gross Z. Chem. Eur. J., 2011, 17: 12294; (c) Nigel-Etinger I, Goldberg I, Gross Z. Inorg. Chem., 2012, 51: 1983.
[12] Palmer J H, Brock-Nannestad T, Mahammed A, Durrell A C, VanderVelde D, Virgil S, Gross Z, Gray H B. Angew. Chem. Int. Ed., 2011, 50: 9433.
[13] Agadjanian H, Ma J, Rentsendorj A, Valluripalli V, Hwang J Y, Mahammed A, Farkas D L, Gray H B, Gross Z, Medina-Kauwe L K. Proc. Natl. Acad. Sci. USA, 2009, 106: 6105.
[14] (a) Fu B Q, Huang J, Ren L G, Weng X C, Zhou Y Y, Du Y H, Wu X J, Zhou X, Yang G F. Chem. Commun., 2007, 3264; (b) Fu B Q, Zhang D, Weng X C, Zhang M, Ma H, Ma Y Z, Zhou X. Chem. Eur. J., 2008, 14: 9431; (c) Ma H, Zhang M, Zhang D, Huang R, Zhao Y, Yang H, Liu Y J, Weng X C, Zhou Y Y, Deng M G, Zhou X. Chem. Asian J., 2010, 5: 114.
[15] (a) Zhang Y, Wang Q, Wen J Y, Wang X L, Mahmood M H R, Ji L N, Liu H Y. Chin. J. Chem., 2013, 31: 1321; (b) Zhang Y, Chen H, Wen J Y, Wang X L, Wang H, Ji L N, Liu H Y. Chem. J. Chin. Univ., 2013, 34: 2462; (c) Zhang Y, Wen J Y, Wang X L, Mahmood M H R, Liu Z Y, Wang H, Ji L N, Liu H Y. Appl. Organometal. Chem., 2014, 28: 559.
[16] Basumatary B, Kaloo M A, Singh V K, Mishra R, Murugavel M, Sankar J. RSC Adv., 2014, 4: 28417.
[17] Chen G Q, Xu Z J, Zhou C Y, Che C M. Chem. Commun., 2011, 47: 10963.
[18] Liu H Y, Lai T S, Yeung L L, Chang C K. Org. Lett., 2003, 5: 617.
[19] Zhan H Y, Liu H Y, Chen H J, Jiang H F. Tetrahedron Lett., 2009, 50: 2196.
[20] Lian P, Liu H Y, Liu L Y, Shi L, Jiang H F, Chang C K. Chin. Chem. Lett., 2009, 20: 21.
[21] Shi L, Liu H Y, Shen H, Hu J, Zhang G L, Wang H, Ji L N, Chang C K, Jiang H F. J. Porph. Phthal., 2009, 13: 1221.
[22] Zhan H Y, Liu H Y, Lu J, Wang A Z, You L L, Wang H, Ji L N, Jiang H F. J. Porph. Phthal., 2010, 14: 150.
[23] Shi L, Liu H Y, Peng K M, Wang X L, You L L, Lu J, Zhang L, Wang H, Ji L N, Jiang H F. Tetrahedron Lett., 2010, 51: 3493.
[24] Lu J, Liu H Y, Shi L, Wang X L, Ying X, Zhang L, Ji L N, Zang L Q, Chang C K. Chin. Chem. Lett., 2011, 22: 101.
[25] Mahmood M H R, Liu Z Y, Liu H Y, Zou H B, Chang C K. Chin. Chem. Lett., 2014, 25: 1349.
[26] Liu H Y, Chen L, Yam F, Zhan H Y, Ying X, Wang X L, Jiang H F, Chang C K. Chin. Chem. Lett., 2008, 19: 1000.
[27] Liu H Y, Yam F, Xie Y T, Li X Y, Chang C K. J. Am. Chem. Soc., 2009, 131: 12890.
[28] Liu H Y, Zhou H, Liu L Y, Ying X, Jiang H F, Chang C K. Chem. Lett., 2007, 36: 274.
[29] Ng N C, Mahmood M H R, Liu H Y, Yam F, Yeung L L, Chang C K. Chin. Chem. Lett., 2014, 25: 571.
[30] Yu L, Wang Q, Dai L, Li W Y, Chen R, Mahmood M H R, Liu H Y, Chang C K. Chin. Chem. Lett., 2013, 24: 447.
[31] Wang Q, Zhang Y, Yu L, Yang H, Mahmood M H R, Liu H Y. J. Porph. Phthal., 2014, 18: 316.
[32] Gross Z, Simkhovich L. Chem. Commun., 1999, 599.
[33] Biswas A N, Das P, Agarwala A, Bandyopadhyay D, Bandyopadhyay P. J. Mol. Catal. A: Chem., 2010, 326: 94.
[34] Biswas A N, Pariyar A, Bose S, Das P, Bandyopadhyay P. Catal. Commun., 2010, 11: 1008.
[35] Pariyar A, Bose S, Biswas A N, Das P, Bandyopadhyay P. Catal. Commun., 2013, 32: 23.
[36] Bose S, Pariyar A, Biswas A N, Bandyopadhyay P. J. Mol. Catal. A: Chem., 2013, 378: 179.
[37] (a) Anding B J, Ellern A, Woo L K. Organometallics, 2012, 31: 3628; (b) Xu X, Lu H J, Ruppel J V, Cui X, de Mesa S L, Wojtas L, Zhang X P. J. Am. Chem. Soc., 2011, 133: 15292; (c) Ruppel J V, Gauthier T J, Snyder N L, Perman J A, Zhang X P. Org. Lett., 2009, 11: 2273; (d) Zhu S F, Ruppel J V, Lu H J, Wojtas L, Zhang X P. J. Am. Chem. Soc., 2008, 130: 5042; (e) Zhu S F, Perman J A, Zhang X P. Angew. Chem. Int. Ed., 2008, 47: 8460; (f) Chen Y, Zhang X P. J. Org. Chem., 2007, 72: 5931.
[38] (a) Chen Y, Fields K B, Zhang X P. J. Am. Chem. Soc., 2004, 126: 14718; (b) Chen Y, Ruppel J V, Zhang X P. J. Am. Chem. Soc., 2007, 129: 12074; (c) Chattopadhyay P, Matsuo T, Tsuji T, Ohbayashi J, Hayashi T. Organometallics, 2011, 30: 1869.
[39] (a) Morandi B, Carreira E M. Science, 2012, 335: 1471; (b) Morandi B, Carreira E M. Angew. Chem. Int. Ed., 2010, 49: 938; (c) Morandi B, Dolva A, Carreira E M. Org. Lett., 2012, 14: 2162; (d) Morandi B, Cheang J. Carreira E M. Org. Lett., 2011, 13: 3080.
[40] Simkhovich L, Mahammed A, Goldberg I, Gross Z. Chem. Eur. J., 2001, 7: 1041.
[41] (a) Vyas R, Gao G Y, Harden J D, Zhang X P. Org. Lett., 2004, 6: 1907; (b) Gao G Y, Jones J E, Vyas R, Harden J D, Zhang X P. J. Org. Chem., 2006, 71: 6655; (c) Ruppel J V, Jones J E, Huff C A, Kamble R M, Chen Y, Zhang X P. Org. Lett., 2008, 10: 1995; (d) Jones J E, Ruppel J V, Gao G Y, Moore T M, Zhang X P. J. Org. Chem., 2008, 73: 7260.
[42] Liu P, Wong E L M, Yuen A W H, Che C M. Org. Lett., 2008, 10: 3275.
[43] Simkhovich L, Gross Z. Tetrahedron Lett., 2001, 42: 8089.
[44] Liang L, Lv H B, Yu Y, Wang P, Zhang J L. Dalton Trans., 2012, 41: 1457.
[45] (a) Baumann L K, Mbuvi H M, Du G D, Woo L K. Organometallics, 2007, 26: 3995; (b) Lu H J, Jiang H L, Wojtas L, Zhang X P. Angew. Chem. Int. Ed., 2010, 49: 10192; (c) Lyaskovsky V, Suarez A I O, Lu H J, Jiang H L, Zhang X P, de Bruin B. J. Am. Chem. Soc., 2011, 133: 12264; (d) Lu H J, Jiang H L, Hu Y, Wojtas L, Zhang X P. Chem. Sci., 2011, 2: 2361; (e) Lu H J, Hu Y, Jiang H L, Wojtas L, Zhang X P. Org. Lett., 2012, 14: 5158.
[46] Aviv I, Gross Z. Synlett., 2006, 6: 951.
[47] Aviv I, Gross Z. Chem. Eur. J., 2008, 14: 3995.
[48] Kuwano T, Kurahashi T, Matsubara S. Chem. Lett., 2013, 42: 1241.
[49] Nakano K, Kobayahi T, Ohkawara T, Imoto H, Nozaki K. J. Am. Chem. Soc., 2013, 135: 8456.
[50] (a) Mirafzal G A, Cheng G L, Woo L K. J. Am. Chem. Soc., 2002, 124: 176; (b) Cheng G L, Mirafzal G A, Woo L K. Organometallics, 2003, 22: 1468; (c) Chen Y, Huang L Y, Ranade M A, Zhang X P. J. Org. Chem., 2003, 68: 3714; (d) Chen Y, Huang L Y, Zhang X P. Org. Lett., 2003, 5: 2493.
[51] Tachinami T, Nishimura T, Ushimaru R, Noyori R, Naka H. J. Am. Chem. Soc., 2013, 135: 50.
[52] Wakabayashi R, Kurahashi T, Matsubara S. Org. Lett., 2012, 14: 4794.
[53] Wang J W, Meng F H, Zhang L F. Organometallics, 2009, 28: 2334.
[54] Venkatasubbaiah K, Zhu X J, Kays E, Hardcastle K I, Jones C W. ACS Catal., 2011,1: 489.
[1] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[2] Lan Mingyan, Zhang Xiuwu, Chu Hongyu, Wang Chongchen. MIL-101(Fe) and Its Composites for Catalytic Removal of Pollutants: Synthesis Strategies, Performances and Mechanisms [J]. Progress in Chemistry, 2023, 35(3): 458-474.
[3] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[4] Kelong Fan, Lizeng Gao, Hui Wei, Bing Jiang, Daji Wang, Ruofei Zhang, Jiuyang He, Xiangqin Meng, Zhuoran Wang, Huizhen Fan, Tao Wen, Demin Duan, Lei Chen, Wei Jiang, Yu Lu, Bing Jiang, Yonghua Wei, Wei Li, Ye Yuan, Haijiao Dong, Lu Zhang, Chaoyi Hong, Zixia Zhang, Miaomiao Cheng, Xin Geng, Tongyang Hou, Yaxin Hou, Jianru Li, Guoheng Tang, Yue Zhao, Hanqing Zhao, Shuai Zhang, Jiaying Xie, Zijun Zhou, Jinsong Ren, Xinglu Huang, Xingfa Gao, Minmin Liang, Yu Zhang, Haiyan Xu, Xiaogang Qu, Xiyun Yan. Nanozymes [J]. Progress in Chemistry, 2023, 35(1): 1-87.
[5] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[6] Dang Zhang, Xi Wang, Lei Wang. Biomedical Applications of Enzyme-Powered Micro/Nanomotors [J]. Progress in Chemistry, 2022, 34(9): 2035-2050.
[7] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[8] Huiyue Wang, Xin Hu, Yujing Hu, Ning Zhu, Kai Guo. Enzyme-Catalyzed Atom Transfer Radical Polymerization [J]. Progress in Chemistry, 2022, 34(8): 1796-1808.
[9] Ru Jiang, Chenxu Liu, Ping Yang, Shuli You. Condensed Matter Chemistry in Asymmetric Catalysis and Synthesis [J]. Progress in Chemistry, 2022, 34(7): 1537-1547.
[10] Xinglong Li, Yao Fu. Preparation of Furoic Acid by Oxidation of Furfural [J]. Progress in Chemistry, 2022, 34(6): 1263-1274.
[11] Peng Wang, Huan Liu, Da Yang. Recent Advances on Tandem Hydroformylation of Olefins [J]. Progress in Chemistry, 2022, 34(5): 1076-1087.
[12] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[13] Fengshou Yu, Jiayu Zhan, Lu-Hua Zhang. The progress on Electrochemical CO2-to-Formate Conversion by p-Block Metal Based Catalysts [J]. Progress in Chemistry, 2022, 34(4): 983-991.
[14] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[15] Hao Sun, Chaopeng Wang, Jun Yin, Jian Zhu. Fabrication of Electrocatalytic Electrodes for Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 519-532.