中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (7): 861-869 DOI: 10.7536/PC141239 Previous Articles   Next Articles

• Review and comments •

Formation, Tuning and Application of Chiral Nematic Liquid Crystal Phase Based on Nanocrystalline Cellulose

Dai Linlin1, Li Wei1,2, Cao Jun2, Li Jian1, Liu Shouxin*1   

  1. 1. College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China;
    2. College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 31170545), the Fundamental Research Funds for the Central Universities (No. 2572014EB01), and the China Postdoctoral Science Foundation (No. 2014M561313).
PDF ( 2232 ) Cited
Export

EndNote

Ris

BibTeX

Chiral nematic liquid crystals, which consist of mesogens organized into a long-range helical assembly, exhibit unique properties, such as the selective reflection of circularly polarized light. The incorporation of chiral nematic organization into solid-state materials could give rise to novel properties. Chiral assembled materials have received increasing attention in many research areas as new functional composite materials, especially focusing on their potential application in sensors and enantiomeric resolution. Nanocrystalline cellulose (NCC) is a kind of rod-like nanomaterial obtained from inexpensive renewable biomass, which organizes into a chiral nematic liquid crystal phase via self-assembly in certain circumstance. Taking advantage of the chiral nematic order and nanoscale of the NCC templates, new functional materials can be prepared. Chiral assembled materials based on NCC represent a major branch of future research because of their abundance, simple synthesis and other novel properties. In this paper, the formation, tuning and application of NCC chiral nematic structure are reviewed, especially for the tuning method which included the effect of NCC properties, circumstance, additives. Recent efforts to use NCC chiral nematic structure for application in optical and electronic materials and template are also summarized. The examples covered in this account demonstrate that there is a rich diversity of composite materials accessible using NCC templating.

Contents
1 Introduction
2 Formation and characterization of NCC chiral nematic liquid crystal phase
2.1 Formation of NCC chiral nematic liquid crystal phase
2.2 Characterization of NCC chiral nematic liquid crystal phase
3 Tuning of NCC chiral nematic liquid crystal phase
3.1 NCC properties
3.2 Ion strength
3.3 Sonication
3.4 Temperature
3.5 Additives
4 Application of NCC chiral nematic liquid crystal phase
4.1 Optical and electronic materials
4.2 Chiral carbon materials
4.3 Chiral inorganic materials
4.4 Chiral organic materials
5 Conclusion

CLC Number: 

[1] Habibi Y, Lucia L A, Rojas O J. Chem. Rev., 2010, 110(6): 3479.
[2] Wegner T H, Jones P E. Cellulose, 2006, 13(2): 115.
[3] Noorani S, Simonsen J, Atre S. Cellulose, 2007, 14(6): 577.
[4] Entcheva E, Bien H, Yin L, Chung C Y, Farrell M, Kostov Y. Biomaterials, 2004, 25(26): 5753.
[5] Dugan J M, Gough J E, Eichhorn S J. Nanomedicine, 2013, 8(2): 297.
[6] Kim J, Yun S, Ounaies Z. Macromolecules, 2006, 39(12): 4202.
[7] Li W, Zhao X, Liu S X. Carbohydr. Polym., 2013, 94(1): 278.
[8] 李伟(Li W), 王锐(Wang R), 刘守新(Liu S X). 化学进展(Progress in Chemistry), 2010, 22(10): 2060.
[9] Marchessault R H, Morehead F F, Watter N M. Nature, 1959, 184: 632.
[10] Werbowyj R S, Gray D G. Mol. Cryst. Liq. Cryst. Lett., 1976, 34: 97.
[11] Revol J F, Bradford H, Giasson J, Marchessault R H, Gray D G. Int. J. Biol. Macromol., 1992, 14(3): 170.
[12] 薛岚(Xue L). 南京林业大学硕士论文(Master Dissertation of Nanjing Forestry University), 2012.
[13] Shafiei-Sabet S, Hamad W Y, Hatzikiriakos S G. Langmuir, 2012, 28(49): 17124.
[14] Lagerwall J P F, Schütz C, Salajkova M, Noh J H, Park J H, Scalia G, Bergstroöm L. NPG Asia Mater., 2014, 6(1): e80.
[15] 徐雁(Xu Y). 化学进展(Progress in Chemistry), 2011, 23(11): 2183.
[16] Araki J, Kuga S. Langmuir, 2001, 17(15): 4493.
[17] Mu X, Gray D G. Langmuir, 2014, 30(31): 9256.
[18] Dumanli A G, Kamita G, Landman J, van der Kooij H, Glover B J, Baumberg J J, Steiner U, Vignolini S. Adv. Opt. Mater., 2014, 2: 646.
[19] Beck S, Bouchard J, Berry R. Biomacromolecules, 2012, 13(5): 1486.
[20] De Souza Lima M M, Borsali R. Macromol. Rapid Commun., 2004, 25(7): 771.
[21] Beck S, Roman M, Gray D G. Biomacromolecules, 2005, 6(2): 1048.
[22] 曾加(Zeng J), 黄勇(Huang Y). 高分子材料科学与工程(Polym. Mater. Sci. Eng.), 2000, 16(6):13.
[23] Abhijit S, Yoko T, Yang H, Cees M W B, Dirk J B, Rint P S. Chem. Commun., 2012, 48(38): 4579.
[24] Edgar C D, Gray D G. Cellulose, 2001, 8(1): 5.
[25] Majoinen J, Kontturi E, Ikkala O, Gray D G. Cellulose, 2012, 19(5): 1599.
[26] Roman M, Gray D G. Langmuir, 2005, 21(12): 5555.
[27] Chen Q, Liu P, Nan F, Zhou L, Zhang J. Biomacromolecules, 2014, 15(11): 4343.
[28] Dumanli A G, van der Kooij H M, Kamita G, Reisner E, Baumberg J J, Steiner U, Vignolini S. ACS Appl. Mater. Interfaces, 2014, 6(15): 12302.
[29] Kelly J A, Giese M, Shopsowitz K E, Hamad W Y, MacLachlan M J. Acc. Chem. Res., 2014, 47(4): 1088.
[30] Beck S, Bouchard J, Chauve G, Berry R. Cellulose, 2013, 20(3): 1401.
[31] Tang H, Guo B, Jiang H, Xue L, Li B, Cao X, Zhang Q, Li P. Cellulose, 2013, 20(6): 2667.
[32] Bordel D, Putaux J L, Heux L. Langmuir, 2006, 22(11): 4899.
[33] Beck S, Bouchard J. Nord. Pulp. Pap. Res. J., 2014, 29(1): 6.
[34] Rosa M F, Medeiros E S, Malmonge J A, Gregorski K S, Wood D F, Mattoso L H C, Glenn G, Orts W J, Imam S H. Carbohydr. Polym., 2010, 81(1): 83.
[35] Bondeson D, Mathew A, Oksman K. Cellulose, 2006, 13(2): 171.
[36] Dong X M, Kimura T, Revol J F, Gray D G. Langmuir, 1996, 12(8): 20762.
[37] Viet D, Beck S, Gray D G. Cellulose, 2007, 14(2): 109.
[38] Bai W, Holbery J, Li K C. Cellulose, 2009, 16(3): 455.
[39] Dong X M, Revol J, Gray D G. Cellulose, 1998, 5(1): 19.
[40] Hirai A, Inui O, Horii F, Tsuji M. Langmuir, 2008, 25(1): 497.
[41] Revol J F, Godbout L, Gray D G. J. Pulp. Pap. Sci., 1998, 24(5): 146.
[42] Dong X M, Gray D G. Langmuir, 1997, 13(8): 2404.
[43] Beck S, Bouchard J, Berry R. Biomacromolecules, 2010, 12(1): 167.
[44] Filson P B, Dawson-Andoh B E. Bioresour. Technol., 2009, 100(7): 2259.
[45] Li W, Wang R, Liu S. Bioresources, 2011, 6(4): 4271.
[46] Giese M, de Witt J C, Shopsowitz K E, Manning A P, Dong R Y, Michal C A, Hamad W Y, MacLachlan M J. ACS Appl. Mater. Interfaces., 2013, 5(15): 6854.
[47] Guégan R, Morineau D, Lefort R, Béziel W, Guendouz M, Noirez L, Henschel A, Huber P. Eur. Phys. J. E., 2008, 26(3): 261.
[48] Beck S, Bouchard J, Berry R. Biomacromolecules, 2010, 12(1): 167.
[49] Hu Z, Cranston E D, Ng R, Pelton R. Langmuir, 2014, 30(10): 2684.
[50] Edgar C D, Gray D G. Macromolecules, 2002, 35(19): 7400.
[51] Beck S, Viet D, Gray D G. Cellulose, 2006, 13(6): 629.
[52] Cheung C C Y, Giese M, Kelly J A, Hamad W Y, MacLachlan M J. ACS Macro. Lett., 2013, 2(11): 1016.
[53] Dong X M, Gray D G. Langmuir, 1997, 13(11): 3029.
[54] Kelly J A, Shopsowitz K E, Ahn J M, Hamad W Y, MacLachlan M J. Langmuir, 2012, 28(50): 17256.
[55] Kelly J A, Manchee C P K, Cheng S, Ahn J M, Shopsowitz K E, Hamad W Y, MacLachlan M J. J. Mater. Chem. C, 2014, 2: 5093.
[56] Giese M, Khan M K, Hamad W Y, MacLachlan M J. ACS Macro. Lett., 2013, 2(9): 818.
[57] Fernandes S N, Geng Y, Vignolini S, Glover B J, Trindade A C, Canejo J P, Almeida P L, Brogueira P, Godinho M H. Macromol. Chem. Phys., 2013, 214(1): 25.
[58] Zhang Y P, Chodavarapu V P, Kirk A G, Andrews M P. Sensor Actuat. B-Chem., 2013, 176: 692.
[59] Yue W, Randorn C, Attidekou P S, Su Z, Irvine J T, Zhou W. Adv. Funct. Mater., 2009, 19(17): 2826.
[60] Qi H, Shopsowitz K E, Hamad W Y, MacLachlan M J. J. Am. Chem. Soc., 2011, 133(11): 3728.
[61] Zhang Y P, Chodavarapu V P, Kirk A G, Andrews M P. J. Nanophotonics, 2012, 6(1): 063516.
[62] Asefa T. Angew. Chem. Int. Ed., 2012, 51(9): 2008.
[63] 吴伟兵(Wu W B), 张磊(Zhang L). 化学进展(Progress in Chemistry), 2013, 26(0203): 403.
[64] Shopsowitz K E, Hamad W Y, MacLachlan M J. Angew. Chem. Int. Edit., 2011, 50 (46): 10991.
[65] Shopsowitz K E, Kelly J A, Hamad W Y, MacLachlan M J. Adv. Funct. Mater., 2014, 24(3): 327.
[66] Antonelli D M, Ying J Y. Angew. Chem. Int. Edit., 1995, 34(18): 2014.
[67] Dujardin E, Blaseby M, Mann S. J. Mater. Chem., 2003, 13(4): 696.
[68] Thomas A, Antonietti M. Adv. Funct. Mater., 2003, 13(10): 763.
[69] Shin Y, Exarhos G. J. Mater. Lett., 2007, 61(11): 2594.
[70] Shopsowitz K E, Qi H, Hamad W Y, MacLachlan M J. Nature, 2010, 468(7322): 422.
[71] Shopsowitz K E, Stahl A, Hamad W Y, MacLachlan M J. Angew. Chem. Int. Edit., 2012, 51(28): 6886.
[72] Shopsowitz K E, Hamad W Y, MacLachlan M J. J. Am. Chem. Soc., 2012, 134 (2): 867.
[1] Liangchun Li, Renlin Zheng, Yi Huang, Rongqin Sun. Self-Sorting Assembly in Multicomponent Self-Assembled Low Molecular Weight Hydrogels [J]. Progress in Chemistry, 2023, 35(2): 274-286.
[2] Xiaojun Liu, Lang Qin, Yanlei Yu. Light-Driven Handedness Inversion of Cholesteric Liquid Crystals [J]. Progress in Chemistry, 2023, 35(2): 247-262.
[3] Shuai Huang, Yu Tao, Yinliang Huang. Photodeformable Composite Materials Based on Liquid Crystalline Polymers [J]. Progress in Chemistry, 2022, 34(9): 2012-2023.
[4] Meng Wang, He Song, Yewen Li. Three Dimensional Self-Assembled Blue Phase Liquid Crystalline Photonic Crystal [J]. Progress in Chemistry, 2022, 34(8): 1734-1747.
[5] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[6] Zhenxing Li, Zhiwang Luo, Ping Wang, Zhenqiang Yu, Erqiang Chen, Helou Xie. Luminescent Liquid Crystalline Polymers: Molecular Fabrication, Structure-Properties and Their Applications [J]. Progress in Chemistry, 2022, 34(4): 787-800.
[7] Yuling Liu, Tengda Hu, Yilian Li, Yang Lin, Borsali Redouane, Yingjie Liao. Fast Self-Assembly Methods of Block Copolymer Thin Films [J]. Progress in Chemistry, 2022, 34(3): 609-615.
[8] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[9] Meng Wang, He Song, Yifei Zhu. Stimuli-Responsive Blue Phase Liquid Crystalline Photonic Crystal [J]. Progress in Chemistry, 2022, 34(12): 2588-2603.
[10] Meng Wang, Jianfeng Yang. Liquid Crystal Elastomers Based Soft Robots [J]. Progress in Chemistry, 2022, 34(1): 168-177.
[11] Mingxin Zheng, Min Zeng, Xi Chen, Jinying Yuan. Structures and Applications of Photo-Responsive Shape-Changing Liquid Crystal Polymers [J]. Progress in Chemistry, 2021, 33(6): 914-925.
[12] Yena Feng, Shuhe Liu, Shubo Zhang, Tong Xue, Honglin Zhuang, Anchao Feng. Preparation of SiO2/Polymer Nanocomposites Based on Polymerization-Induced Self-Assembly [J]. Progress in Chemistry, 2021, 33(11): 1953-1963.
[13] Chuxuan Yan, Qinglin Li, Zhengqi Gong, Yingzhi Chen, Luning Wang. Organic Semiconductor Nanostructured Photocatalysts [J]. Progress in Chemistry, 2021, 33(11): 1917-1934.
[14] Zixuan Wang, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Design, Self-Assembly and Application of DNA-Peptide Hybrid Molecules [J]. Progress in Chemistry, 2020, 32(6): 687-697.
[15] Meng Wang, Danyang Ma, Chengjie Wang. Near-Infrared Light Responsive Liquid Crystal Elastomers [J]. Progress in Chemistry, 2020, 32(10): 1452-1461.