中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (5): 550-558 DOI: 10.7536/PC141238 Previous Articles   Next Articles

• Review and evaluation •

Surface Plasmon Resonance Methodology for Interaction Kinetics of Biomolecules

Wang Xiao1,2, Xu Jiying1, Chen Yi*1,2,3   

  1. 1. Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;
    3. Beijing National Laboratory for Molecular Science, Beijing 100190, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21235007, 21135006) and the Chinese Academy of Sciences(No. KJCX2-EW-N06-01).
PDF ( 2838 ) Cited
Export

EndNote

Ris

BibTeX

Surface plasmon resonance sensing and imaging methods have been developing very fast during recent years, especially in applying to the study of biomolecular interactions and/or recognitions and determination of kinetic and thermodynamic constants. These progresses are broadly interesting but remain short of reviewing. This paper is thus designed and dedicated to the methodization of the very recent, critical developments in the study of molecular reaction kinetics and measure of their constants. In the end, their prospect is given, in addition to a brief summary of other research progresses.

Contents
1 Introduction
2 Basic principles
2.1 SPR/SPRi principle
2.2 Kinetics principle
2.3 SPR/SPRi approach
2.4 Parameter calculation
3 Practical Methods
3.1 Multi-cycle
3.2 Improved multi-cycle
3.3 Kinetic titration
3.4 Steady state
3.5 Arraying
4 Conclusion and prospect

CLC Number: 

[1] Du Z F, Luo Q, Yang L P, Bing T, Li X C, Guo W, Wu K, Zhao Y, Xiong S X, Shangguan D H, Wang F Y. J. Am. Chem. Soc., 2014, 136: 2948.
[2] Kašpárková J, Brabec V. Biochemistry, 1995, 34: 12379.
[3] Jamieson E R, Lippard S J. Biochemistry, 2000, 39: 8426.
[4] Jamieson E R, Jacobson M P, Lippard S J. J. Biol. Chem.,1999, 274(18): 12346.
[5] Chen G P, Wang X, Liu A R, Qian D J. Mat. Sci. Eng. C, 2009, 29(3): 925.
[6] Caruso F, Niikura K, Furlong D N, Okahata Y. Langmuir, 1997, 13: 3427.
[7] Rich R L, Myszka D G. J. Mol. Recognit., 2006, 19: 478.
[8] Rich R L, Myszka D G. J. Mol. Recognit., 2007, 20: 300.
[9] Crescenzo G D, Boucher C, Durocher Y, Jolicoeur M. Cell Mole. Bioeng., 2008,1(4): 204.
[10] Li Y J, Xiang J, Zhou F M. Plasmonics, 2007, 2: 79.
[11] 杨帆(Yang F),杨秀荣(Yang X R). 化学传感器(Chemical Sensors), 2003, 23(2): 32.
[12] Rich R L, Cannon M J, Jenkins J, Pandian P, Sundaram S, Magyar R, Brockman J, Lambert J, Myszka D G. Anal. Biochem., 2008, 373: 112.
[13] 吴星怡(Wu X Y), 张磊(Zhang L),吕丹(Lv D), 刘艳华(Liu Y H), 陈亚南(Chen Y N),苏位君(Su W J),罗娜(Luo N),向荣(Xiang R).化学学报(Acta Chim. Sinica), 2013, 71: 299.
[14] 申刚义(Shen G Y), 陈义(Chen Y),张轶鸣(Zhang Y M),崔箭(Cui J). 化学进展(Progress in Chemistry), 2010, 26(8): 1648.
[15] 陈义(Chen Y). 化学进展(Progress in Chemistry),2005,17(4): 573.
[16] 张延彪(Zhang Y B),徐超(Xu C),姚辉(Yao H),张肖会(Zhang X H),张军(Zhang J),尹洪宗(Yin H Z).分析科学学报(Journal of Analytical Science), 2012, 28(1): 126.
[17] 陈焕文(Chen H W),牟颖(Mou Y),赵晓君(Zhao X J),宋大千(Song D Q),张寒琦(Zhang H Q),金钦汉(Jin Q H).分析仪器(Analytical Instrumentation), 2001, 2: 3.
[18] Scarano S, Mascini M, Turner A P F, Minunni M. Biosens. Bioelectron., 2010, 25: 957.
[19] 杨帆(Yang F),杨秀荣(Yang X R). 生物工程(Chinese Journal of Biotechnology), 2011, 17(4): 375.
[20] Pillet F, Sanchez A, Formosa C, Séverac M, Trévisiol E, Bouet J Y, Leberre V A. Biosens. Bioelectron., 2013, 43: 148.
[21] Fang S P, Lee H J, Wark A W, Kim H M, Corn R M. Anal. Chem., 2005, 77: 6528.
[22] Shannessy D J, Bruke M B, Soneson K K, Hensley P, Brooks I. Anal. Biochem., 1993, 212: 457.
[23] 黄昊文(Huang H W).化学传感器(Chemical Sensors), 2006, 26(1): 13.
[24] Katsamba P S, Park S, Laird-Offringa I A. Methods, 2002, 26: 95.
[25] Abdiche Y N, Lindquist K C, Pinkerton A, Pons J, Rajpal A. Anal. Biochem., 2011, 411: 139.
[26] Núñez S, Venhorst J, Kruse C G. Drug. Discov. Today, 2012, 17(1): 10.
[27] Hayashi G, Hagihara M, Nakatani K. J. Biotechnol., 2008, 135: 157.
[28] Piliarik M, Parova L, Homola J. Biosens. Bioelectron., 2009, 24(5): 1399.
[29] Lecaruyer P, Mannelli I, Courtois V, Goossens M, Canva M. Anal. Chim. Acta, 2006: 573.
[30] Nelson B P, Grimsrud T E, Liles M R, Goodman R M, Corn R M. Anal. Chem., 2001, 73: 1.
[31] ?ípová H, Homola J. Anal. Chim. Acta., 2013, 773: 9.
[32] Agata R D, Spoto G. Anal. Bioanal. Chem., 2013, 405: 573.
[33] Sassolas A, Béatrice D, Loc J B. Chem. Rev., 2008, 108: 109.
[34] Jeong E J, Jeong Y S, Park Y, Yi S Y, Ahn J, Chung S J, Kim M, Chung B H. J. Biotechnol., 2008, 135(1): 16.
[35] Bouffartigues E, Leh H, Anger-Leroy M, Rimsky S, Buckle M. Nucleic Acids Res., 2007, 35(6): E39.
[36] Wegner G J, Lee H J, Marriott G, Corn R M. Anal. Chem., 2003, 75(18): 4740.
[37] 徐霞(Xu X),叶尊忠(Ye Z R),吴坚(Wu J),应义斌(Zhuang Y B).分析化学(Chinese Journal of Analytical Chemistry), 2010, 38(7): 1052.
[38] du Puch C B M, Barbier E, Kraut A, Couté Y, Fuchs J, Buhot A, Livache T, Sève M, Favier A, Douki T, Gasparutto D, Sauvaigo S, Breton J. Arch. Biochem. Biophys., 2011, 507: 296.
[39] Solomun T, Sturm H, Wellhausen R, Seitz H. Chem. Phys. Lett., 2012, 533: 92.
[40] Grant C F, Kanda V, Yu H, Bundle D R, McDermott M T. Langmuir, 2008, 24(24): 14125.
[41] Mercey E, Sadir R, Maillart E, Roget A, Baleux F, Lortat-Jacob H, Livache T. Anal. Chem., 2008, 80: 3476.
[42] Wark A W, Lee H J, Corn R M. Angew. Chem. Int. Edit., 2008, 47: 644.
[43] Smith E A, Thomas W D, Kiessling L L, Corn R M. J. Am. Chem. Soc., 2003, 125(20): 6140.
[44] Liang K, Chen Y. Bioconjugate. Chem., 2012, 23: 1300.
[45] Wang H B, Zhang Y M, Yuan X, Chen Y, Yan M D. Bioconjugate. Chem., 2011, 22(1): 26.
[46] Nylander C, Liedberg B, Lind T. Sensor. Actuat., 1983, 3: 79.
[47] Liedberg B, Nylander C, Lunstrm I. Sensor. Actuat., 1983, 4: 229.
[48] Nahshol O, Bronner V, Notcovich A, Rubrecht L, Laune D, Bravman T. Anal. Biochem., 2008, 383: 52.
[49] Säfsten P, Klakamp S L, Drake A W, Karlsson R, Myszka D G. Anal. Biochem., 2006, 353: 181.
[50] Steukers M, Schaus J M, Gool R V, Hoyoux A, Richalet P, Sexton D J, Nixon A E, Vanhove M. J. Immunol. Methods, 2006, 310: 126.
[51] Li Y, Lee H J, Corn R M. Nucleic Acids Res., 2006, 34: 6416.
[52] Nelson B P, Liles M R, Frederick K B, Corn R M, Goodman R M. Environ. Microbiol., 2002, 4(11): 735.
[53] Garcia B H N, Goodman R M. J. Virol. Methods, 2008, 147: 18.
[54] Katsamba P S, Navratilova I, Calderon-Cacia M, Fan L,Thornton K, Zhu M D,Vanden Bos T, Forte C, Friend D, Laird-Offringa I. Anal. Biochem., 2006, 352(2): 208.
[55] Krishnamoorthy G, Carlen E T, Berg A V D, Schasfoort R M B. Sensors Actuat. B, 2010, 148: 511.
[56] Cole D K, Pumphrey N J, Boulter J M, Sami M, Bell J I, Gostick E, Price D A, Gao G F, Sewell A K, Jakobsen B K. J. Immunol., 2007, 178: 5727.
[57] Schasfoort R M B, Lau W D, Kooi K, Clevers H, Engbers G H M. Anal. Biochem., 2012, 421: 794.
[58] Cannon M J, Papalia G A, Navratilova I, Fisher R J, Roberts L R, Worthy K M, Stephen A G, Marchesini G R,Collins E J,Casper, D. Anal. Biochem., 2004, 330(1): 98.
[59] Papalia G A, Leavitt S, Bynum M A, Katsamba P S, Wilton R, Qiu H W, Steukers M, Wang S M, Bindu L, Phogat S. Anal. Biochem., 2006, 359(1): 94.
[60] Wolf L K, Gao Y, Georgiadis R M. J. Am. Chem. Soc., 2007, 129: 10503.
[61] Raz S R, Bremer M G E G, Giesbers M, Norde W. Biosens. Bioelectron., 2008, 24: 552.
[62] Tsai W C, Hsu Y H. Anal. Lett., 2012, 45: 1495.
[63] Scarano S, Mascini M, Turner A P F, Minunni M. Biosens. Bioelectron., 2010, 25(5): 957.
[64] Rich R L, Myszka D G. Anal. Biochem., 2007, 361: 1.
[65] Christensen L L. Anal. Biochem., 1997, 249: 153.
[66] Glaser R W. Anal. Biochem., 1993, 213: 152.
[67] Goldstein B, Coombs D, He X Y, Pineda A R, Wofsy C. J. Mol. Recognit., 1999,12: 293.
[68] Myszka D G, He X, Dembo M, Morton T A, Goldstein B. J. Biophys., 1998, 75: 583.
[69] Kikuchi Y, Uno S, Nanami M, Yoshimura Y, Iida S I, Fukushima N, Tsuchiya M, et al. J. Biosci. Bioeng., 2005, 100(3): 311.
[70] Puiu M, Istrate O, Rotariu L, Bala C. Anal. Biochem., 2012,421: 587.
[71] 杨帆(Yang F), 杨秀荣(Yang X R). 分析化学(Chin. J. Anal. Chem.), 2013, 41(5): 664.
[72] Yamamoto A, Ando Y, Yoshioka K I, Saito K, Tanabe T, Shirakawa H, Yoshida M. J. Biochem., 1997, 122: 586.
[73] Krishnamoorthy G, Beusink J B, Schasfoort R M B. Anal. Methods, 2010, 2: 1020.
[74] Krishnamoorthy G, Carlen E T, Beusink J B, Schasfoort R M B, Berg A V D. Anal. Methods, 2009, 1: 162.
[75] Pillet F, Romera C, Trévisiol E, Bellon S, Teulade-Fichou M P, Francois J M, Pratviel G, Leberre V A. Sensors Actuat. B, 2011, 157: 304.
[76] Wegner G J, Wark A W, Lee H J, Codner E, Saeki T, Fang S P, Corn R M. Anal. Chem., 2004, 76: 5677.
[77] Bravman T, Bronner V, Lavie K, Notcovich A, Papalia G A, Myszka D G. Anal. Biochem., 2006, 358: 281.
[78] Karlsson R, Michaeisson A, Mattsson L. J. Immunol. Mehods, 1991, 145: 229.
[79] Ferreira D C M, Mendes R K, Kubota L T. J. Braz. Chem. Soc., 2010, 21(9): 1648.
[80] O'Shannessy D J, Brighamburke M, Soneson K K, Hensley P,Brooks I. Anal. Biochem., 1993, 212: 457.
[81] Schubert F, Zettl H, Hafner W, Krausch G. Biochemistry, 2003, 42: 10288.
[82] Edwards P R, Leatherbarrow R J. Anal. Biochem., 1997, 246: 1.
[83] Calakos N, Bennett M K, Peterson K E, Scheller R H. Science, 1994, 263: 1145.
[84] Höbel S, Vornicescu D, Bauer M, Fischer D, Keusgen M, Aigner A. Anal. Chem., 2014, 86(14): 6827.
[85] Rich R L, Papalia G A, Flynn P J, Furneisen J, Quinn J, Klein J S, et al. Anal. Biochem., 2009, 386(2) : 194.
[86] Karlsson R, Katsamba P S, Nordin H, Pol E, Myszka D G. Anal. Biochem., 2006, 349: 136.
[87] Miao Y, Cui T J, Leng F F, Wilson W D. Anal. Biochem., 2008,374: 7.
[88] Tan M C, Matsuoka S, Ano H, Ishida H, Hirose M, Sato F, Sugiyama S, Murata M. Bioorg. Med. Chem., 2014, 22: 1804.
[89] Pillet F, Sanchez A, Formosa C, Séverac M, Trévisiol E, Bouet J Y, Leberre V A. Biosens. Bioelectron., 2013, 43: 148.
[90] Palau W, Primo C D. Biochimie, 2012, 94: 1891.
[91] Glöck J M, Koenig B W, Willbold D. Anal. Biochem., 2011, 408: 46.
[92] Gopinath S C B, Hayashi K, Lee J B, Kamori A, Dong C X, Hayashi T, Kumar P K P. Anal. Chem., 2013, 85: 10455.
[93] Trutnau H H. J. Biotechnol., 2006, 124: 191.
[94] Suenaga E, Mizuno H, Penmetcha K K R. Biosens. Bioelectron., 2012, 32: 195.
[95] Gamsjaeger R, Kariawasam R, Bang L H, Touma C, Nguyen C D, Matthews J M, Cubeddu L, Mackay J P. Anal. Biochem., 2013, 440: 178.
[96] Cao J, Sun T, Grattan K T V. Sensor. Actuat. B-Chem., 2014, 195: 332.
[97] Wark A W, Lee H J, Corn R M. Anal. Chem., 2005, 77: 3904.
[98] Li M, Cushing S K, Wu N Q. Analyst, 2015, 140: 386.
[99] Farcau C, Astilean S. J. Phys. Chem. C, 2010, 114: 11717.
[100] Vasdekis A E, Laporte G P J. Int. J. Mol. Sci., 2011, 12: 5135.
[101] Hwang E, Smolyaninov I I, Davis C C. Nano Lett., 2010, 10: 813.
[102] Chabot V, Miron Y, Grandbois M, Charette P G. Sensor. Actuat. B-Chem., 2012, 174: 94.
[1] Guoying Yao, Qinglu Liu, Zongyan Zhao. Applications of Localized Surface Plasmon Resonance Effect in Photocatalysis [J]. Progress in Chemistry, 2019, 31(4): 516-535.
[2] Xiaowei Cao, Shuai Chen, Min Bao, Hongcan Shi, Wei Li. Synthesis and Surface Modifications of Au Nanostars and Their Applications in Biomedical Fields [J]. Progress in Chemistry, 2018, 30(9): 1380-1391.
[3] Zhao Bing, Qi Ning, Zhang Keqin. Plasmon-Enhanced Upconversion Fluorescence and Its Application [J]. Progress in Chemistry, 2016, 28(11): 1615-1625.
[4] Wang Xiaoping, Hong Xiayun, Zhan Shuyue, Huang Zihao, Pang Kai. Surface Plasmon Resonance Sensing Technology and Bioanalytical Instrument [J]. Progress in Chemistry, 2014, 26(07): 1143-1159.
[5] Zhang Qian, Zhou Ying, Zhang Zhao, He Yun, Chen Yongdong, Lin Yuanhua. Plasmonic Photocatalyst [J]. Progress in Chemistry, 2013, 25(12): 2020-2027.
[6] Zhu Mingshan, Chen Penglei*, Liu Minghua*. Ag/AgX (X=Cl, Br, I): A New Type Plasmonic Photocatalysts [J]. Progress in Chemistry, 2013, 25(0203): 209-220.
[7] Shen Gangyi,Chen Yi,Zhang Yiming,Cui Jian. Surface Plasmon Resonance Imaging [J]. Progress in Chemistry, 2010, 22(08): 1648-1655.
[8] Xiao Guina Cai Jiye. Optical Biosensors Based on Localized Surface Plasmon Resonance Effect [J]. Progress in Chemistry, 2010, 22(01): 194-200.
[9] Ma Zhanfang Si Guoli Chu Yiming Chen Ying. Advances on Triangular Silver Nanoprisms [J]. Progress in Chemistry, 2009, 21(09): 1847-1856.
[10] Guo Wenting|Li Xiuli|Wei Tianxin**. Applications of Surface Plasmon Resonance Technique in Gas Sensing [J]. Progress in Chemistry, 2008, 20(01): 155-162.
[11] Wang Qiong,Tang Hao **,Xie Qingji,Yao Shouzhuo**. Electrochemical Surface Plasmon Resonance Studies [J]. Progress in Chemistry, 2007, 19(0203): 370-376.
[12] Xiuli Li,Tianxin Wei**. Surface Plasmon Resonance Combined with Conventional Techniques [J]. Progress in Chemistry, 2007, 19(01): 193-200.
[13] Huiyu Liu1,2,Dong Chen1,Jining Gao1,2,Fangqiong Tang1**,Xiangling Ren1. Liquid Phase Fabrication of Noble Metal Nanomaterials and Their Surface Plasmon Resonance-Based Applications [J]. Progress in Chemistry, 2006, 18(0708): 889-896.
[14] Hu Yonghong1,Rong Jianhua1,Liu Yingliang1**,Man Shiqing2. The Preparation,Properties and Applications of Metallodielectric Core2Shell Structure Composite Materials [J]. Progress in Chemistry, 2005, 17(06): 994-1000.