中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (8): 1123-1132 DOI: 10.7536/PC141233 Previous Articles   Next Articles

Treatment of Organic Pollutants Using Electro-Fenton and Electro-Fenton-Like Process in Aqueous Solution

Lin Heng, Zhang Hui*   

  1. Department of Environmental Engineering, Wuhan University, Wuhan 430079, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National High?Tech R&D Program of China (No. 2008AA06Z332), Wuhan Science and Technology Bureau through “The Gongguan Project”(No. 201060723313), and the Fundamental Research Funds for the Central Universities (No. 2012205020207).
PDF ( 2446 ) Cited
Export

EndNote

Ris

BibTeX

Conventional Fenton process is one of the promising advanced oxidation technologies (AOTs) for the treatment of organic pollutants in water. In Fenton process, hydroxyl radical (·OH), a kind of strong oxidant, is formed through Fenton's reaction and then degrades organic pollutants. Similar to conventional Fenton process, transition metal ions (Fe2+, Co2+, Ag+, etc.) can also activate persulfate (PS) and generate sulfate radicals (SO4·-, SR). Sulfate radical is a powerful oxidant and can oxidize most of organic pollutants. This process is named as “Fenton-like process”. There are some disadvantages existed in conventional Fenton and Fenton-like process. For example, a high concentration of Fe2+ is required and a large amount of iron sludge is generated. In order to solve these problems, electro-Fenton and SR-based electro-Fenton-like processes are proposed. Fe2+ can be regenerated via cathodic reduction in electro-Fenton and electro-Fenton-like processes. Therefore, the Fe2+ concentration used in these processes is much lower than that in Fenton and Fenton-like processes. This paper provides an overview of mechanism and research progress of electro-Fenton and SR-based electro-Fenton-like processes. The types and improvements for electro-Fenton and electro-Fenton-like processes are summarized. Moreover, the prospects of the research areas meriting further investigation and developed trends are pointed out.

Contents
1 Introduction
2 Electro-Fenton process
2.1 Types of electro-Fenton processes
2.2 Improvements in electro-Fenton processes
3 Electro-Fenton-like process
3.1 Types of electro-Fenton-like processes
3.2 The effect of important parameters on electro-Fenon-like processes
3.3 Improvements in electro-Fenton-like processes
4 Comparison of oxidation mechanism
5 Conclusion and perspective

CLC Number: 

[1] Ayoub K, van Hullebusch E D, Cassir M, Bermond A. J. Hazard. Mater., 2010, 178(1/3): 10.
[2] Bautista P, Mohedano A F, Casas J A, Zazo J A, Rodriguez J J. J. Chem. Technol. Biotechnol., 2008, 83(10): 1323.
[3] Nidheesh P, Gandhimathi R, Ramesh S. Environ. Sci. Pollut. Res., 2013, 20(4): 2099.
[4] Chou S, Huang Y H, Lee S N, Huang G H, Huang C. Water Res., 1999, 33(3): 751.
[5] Jiang C C, Zhang J F. J. Zhejiang Univ. Sci. A, 2007, 8(7): 1118.
[6] Xu X R, Li X Z. Sep. Purif. Technol., 2010, 72(1): 105.
[7] Anipsitakis G P, Dionysiou D D. Appl. Catal., B, 2004, 54(3): 155.
[8] Chen X Y, Qiao X L, Wang D G, Lin J, Chen J W. Chemosphere, 2007, 67(4): 802.
[9] Gong Y, Lin L. Molecules, 2011, 16(3): 2714.
[10] Long A H, Lei Y, Zhang H. Ind. Eng. Chem. Res., 2013, 53(3): 1033.
[11] Zhou D N, Zhang H, Chen L. J. Chem. Technol. Biotechnol., 2014, 90(5): 775.
[12] 杨世迎(Yang S Y), 陈友媛(Chen Y Y), 胥慧真(Xu H Z), 王萍(Wang P), 刘玉红(Liu Y H). 王茂东(Wang M D),化学进展(Progress in Chemistry), 2008, 20(9): 1433.
[13] Fernandez J, Maruthamuthu P, Renken A, Kiwi J. Appl. Catal., B, 2004, 49(3): 207.
[14] Fernandez J, Nadtochenko V, Kiwi J. Chem. Commun., 2003, 18: 2382.
[15] Wu J, Zhang H, Qiu J J. J. Hazard. Mater., 2012, 215/216: 138.
[16] Wang Y R, Chu W. Water Res., 2011, 45(13): 3883.
[17] Brillas E, Sireés I, Oturan M A. Chem. Rev., 2009, 109(12): 6570.
[18] Nidheesh P V, Gandhimathi R. Desalin. Water Treat., 2014, 52(10/12): 1872.
[19] Oturan N, Hamza M, Ammar S, Abdelhédi R, Oturan M A. J. Electroanal. Chem., 2011, 661(1): 66.
[20] Panizza M, Cerisola G, Appl. Catal., B, 2007, 75(1/2): 95.
[21] Zhou M H, Särkkä H, Sillanpää M. Sep. Purif. Technol., 2011, 78(3): 290.
[22] Dirany A, Sirés I, Oturan N, Özcan A, Oturan M A. Environ. Sci. Technol., 2012, 46(7): 4074.
[23] Zhang H, Fei C Z, Zhang D B, Tang F. J. Hazard. Mater., 2007, 145(1/2): 227.
[24] 张晖(Zhang H), 蒋明(Jiang M), 费成志(Fei C Z), 张道斌(Zhang D B). 化工学报(Journal of Chemical Industry and Engineering), 2008, 59(3): 597.
[25] Zhang H, Cheng Z H, Zhang D B. Fresenius Environ. Bull., 2007, 16(9): 1216.
[26] Zhang H, Ran X N, Wu X G. J. Hazard. Mater., 2012, 241/242: 259.
[27] Zhang H, Wu X G, Li X W. Chem. Eng. J., 2012, 210: 188.
[28] Zhang H, Zhang D B, Zhou J Y. J. Hazard. Mater., 2006, 135(1/3): 106.
[29] 解清杰(Xie Q J), 卢娜(Lu N), 王琳玲(Wang L L), 陆晓华(Lu X H). 水处理技术(Technology of Water Treatment), 2005, 31(11): 58.
[30] Özcan A, ?ahin Y, Koparal A S, Oturan M A. J. Hazard. Mater., 2008, 153(1/2): 718.
[31] Anotai J, Singhadech S, Su C C, Lu M C. J. Hazard. Mater., 2011, 196: 395.
[32] Garcia-Segura S, Garrido J A, Rodríguez R M, Cabot P L, Centellas F, Arias C, Brillas E. Water Res., 2012, 46(7): 2067.
[33] Zhang H, Li Y L, Wu X G. J. Environ. Eng., 2012, 138(SI): 278.
[34] Brillas E, Baños M Á, Skoumal M, Cabot P L, Garrido J A, Rodríguez R M. Chemosphere, 2007, 68(2): 199.
[35] Zhang H, Li Y L, Zhong X, Ran X N. Water Sci. Technol., 2011, 63(7): 1373.
[36] Zhong X, Royer S, Zhang H, Huang Q Q, Xiang L J, Valange S, Barrault J. Sep. Purif. Technol., 2011, 80(1): 163.
[37] He J, Yang X F, Men B, Bi Z, Pu Y, Wang D S. Chem. Eng. J., 2014, 258: 433.
[38] Zubir N A, Yacou C, Zhang X, Diniz da Costa J C. J. Environ. Chem. Eng., 2014, 2(3): 1881.
[39] Liao Q, Sun J, Gao L. Colloids Surf. A, 2009, 345(1/3): 95.
[40] Garrido-Ramírez E G, Mora M L, Marco J F, Ureta-Zañartu M S. Appl. Clay Sci., 2013, 86: 153.
[41] Iglesias O, Gómez J, Pazos M, Sanromán M Á. Appl. Catal., B, 2014, 144: 416.
[42] Luo M S, Yuan S H, Tong M, Liao P, Xie W j, Xu X F. Water Res., 2014, 48: 190.
[43] Yuan S H, Mao X H, Alshawabkeh A N. Environ. Sci. Technol., 2012, 46(6): 3398.
[44] Shukla P R, Wang S B, Ang H M, Tadé M O. Sep. Purif. Technol., 2010, 70(3): 338.
[45] Wang X, Wang L G, Li J B, Qiu J J, Cai C, Zhang H. Sep. Purif. Technol., 2014, 122: 41.
[46] Cai C, Wang L G, Gao H, Hou L W, Zhang H. J. Environ. Sci., 2014, 26(6): 1267.
[47] 龙安华(Long A H), 雷洋(Lei Y), 张晖(Zhang H).化学进展(Progress in Chemistry), 2014, 26(5): 898.
[48] Tsitonaki A, Petri B, Crimi M, MosbK H, Siegrist R L, Bjerg P L. Crit. Rev. Env. Sci. Technol., 2010, 40(1): 55
[49] Yukselen-Aksoy Y, Khodadoust A, Reddy K. Water Air Soil Pollut., 2010, 209(1/4): 419.
[50] Wang Y R, Chu W. Appl. Catal., B, 2012, 123-124: 151.
[51] Pagano M, Volpe A, Mascolo G, Lopez A, Locaputo, V, Ciannarella R. Chemosphere, 2012, 86(4): 329.
[52] Zhao J Y, Zhang Y B, Quan X, Chen S. Sep. Purif. Technol., 2012, 71(3): 302.
[53] Romero A, Santos A, Vicente F, González C. Chem. Eng. J., 2010, 162(1): 257.
[54] Zhou G L, Sun H Q, Wang S B, Ming Ang H, Tadé M O. Sep. Purif. Technol., 2011, 80(3): 626.
[55] Andreozzi R, Caprio V, Marotta R, Vogna D. Water Res., 2003, 37(5): 993.
[56] Liang C J, Wang Z S, Bruell C J. Chemosphere, 2007, 66(1): 106.
[57] Zhang H, Wang Z, Liu C H, Guo Y Z, Shan N, Meng C X, Sun L Y. Chem. Eng. J., 2014, 250: 76.
[58] Yuan S H, Liao P, Alshawabkeh A N. Environ. Sci. Technol., 2013, 48(1): 656.
[59] Lin H, Wu J, Zhang H. Sep. Purif. Technol., 2013, 117: 18.
[60] Lin H, Wu J, Zhang H. Chem. Eng. J., 2014, 244: 514.
[61] Olmez-Hanci T, Imren C, Kabdasli I, Tunay O, Arslan-Alaton I. Photochem. Photobiol. Sci., 2011, 10(3): 408.
[62] Kusic H, Peternel I, Ukic S, Koprivanac N, Bolanca T, Papic S, Bozic A L. Chem. Eng. J., 2011, 172(1): 109.
[63] Hori H, Yamamoto A, Hayakawa E, Taniyasu S, Yamashita N, Kutsuna S, Kiatagawa H, Arakawa R. Environ. Sci. Technol., 2005, 39(7): 2383.
[64] Rastogi A, Al-Abed S R, Dionysiou D D. Appl. Catal., B, 2009, 85(3/4): 171.
[65] Wang Y R, Chu W. Chem. Eng. J., 2013, 215/216: 643.
[66] Lin H, Zhang H, Hou L W. J. Hazard. Mater., 2014, 276: 182.
[67] Cai C, Zhang H, Zhong X, Hou L W. Water Res., 2014, 66: 473.
[68] Sadik W A. J. Photochem. Photobiol. A: Chem., 2007, 191(2/3): 132.
[69] Pignatello J J, Oliveros E, MacKay A. Crit. Rev. Env. Sci. Technol., 2006, 36 (1): 1.
[70] 晏井春(Yan J C). 华中科技大学博士论文(Doctoral Dissertation of Huazhong University of Science and Technology), 2012.
[71] Long A H, Zhang H. Environ. Sci. Pollut. Res., 2015, DOI 10.1007/s11356-015-4406-x.
[72] Antoniou M G, De la Cruz A A, Dionysiou D D. Appl. Catal., B, 2010, 96(3/4): 290.
[73] Georgi A, Kopinke F D. Appl. Catal., B, 2005, 58(1/2): 9.
[1] Lan Mingyan, Zhang Xiuwu, Chu Hongyu, Wang Chongchen. MIL-101(Fe) and Its Composites for Catalytic Removal of Pollutants: Synthesis Strategies, Performances and Mechanisms [J]. Progress in Chemistry, 2023, 35(3): 458-474.
[2] Wenyan Gao, Xuan Zhao, Xilin Zhou, Yaran Song, Qingrui Zhang. Strategies, Research Progress and Enlightenment of Enhancing the Heterogeneous Fenton Catalytic Reactivity: A Critical Review [J]. Progress in Chemistry, 2022, 34(5): 1191-1202.
[3] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
[4] Nan Wang, Yuqi Zhou, Ziye Jiang, Tianyu Lv, Jin Lin, Zhou Song, Lihua Zhu. Synergistically Consecutive Reduction and Oxidation of Per- and Poly-Halogenated Organic Pollutants [J]. Progress in Chemistry, 2022, 34(12): 2667-2685.
[5] Wenliang Han, Linyang Dong. Activation Methods of Advanced Oxidation Processes Based on Sulfate Radical and Their Applications in The Degradation of Organic Pollutants [J]. Progress in Chemistry, 2021, 33(8): 1426-1439.
[6] Lin Gu, Kai Zhang, Haixiang Yu, Guangxia Dong, Xingbo Qiao, Haifeng Wen. Synthesis of Sludge Carbon-Based Catalytic Materials and Their Application in Water Environment [J]. Progress in Chemistry, 2020, 32(9): 1412-1426.
[7] Yue Liu, Yihan Wu, Hongwei Pang, Xiangxue Wang, Shujun Yu, Xiangke Wang. Study on the Removal of Water Pollutants by Graphite Phase Carbon Nitride Materials [J]. Progress in Chemistry, 2019, 31(6): 831-846.
[8] Li Yin, Jianqiao Xu*, Zhoubing Huang, Guosheng Chen, Juan Zheng, Gangfeng Ouyang*. Solid-Phase Microextraction Fibers Based on Novel Materials:Preparation and Application [J]. Progress in Chemistry, 2017, 29(9): 1127-1141.
[9] Long Anhua, Lei Yang, Zhang Hui. In Situ Chemical Oxidation of Organic Contaminated Soil and Groundwater Using Activated Persulfate Process [J]. Progress in Chemistry, 2014, 26(05): 898-908.
[10] Zhu Mingshan, Chen Penglei*, Liu Minghua*. Ag/AgX (X=Cl, Br, I): A New Type Plasmonic Photocatalysts [J]. Progress in Chemistry, 2013, 25(0203): 209-220.
[11] Guo Feng, Zhu Guiru, Gao Congjie. Organic-Inorganic Hybrid Mesoporous Silicas and Their Applications in Environmental Protection [J]. Progress in Chemistry, 2011, 23(6): 1237-1250.
[12] . Activated Carbon Catalyzed Peroxide Degradation of Organic Pollutants in Water [J]. Progress in Chemistry, 2010, 22(10): 2071-2078.
[13] . Advances in the Analysis of Short Chain Chlorinated Paraffins [J]. Progress in Chemistry, 2010, 22(04): 720-726.
[14] Li Yang Jiang Guoxiang Niu Junfeng** Wang Ying Hu Lijuan. Laccase-Catalyzed Oxidation of Organic Pollutants in Water [J]. Progress in Chemistry, 2009, 21(10): 2028-2036.
[15] Liu Jing Wang Zimeng Shen Jiandong Zhang Shicheng Chen Jianmin. Langmuir-Hinshelwood Model of Photocatalytic Oxidation Kinetics of Volatile Organic Pollutants [J]. Progress in Chemistry, 2009, 21(10): 2037-2043.