中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (5): 459-471 DOI: 10.7536/PC141218 Previous Articles   Next Articles

• Review and evaluation •

Microwave-Assisted Synthesis of Calcium Phosphate Nanostructured Materials in Liquid Phase

Chen Feng, Zhu Yingjie*   

  1. Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 51472259, 51172260, 51102258) and the Fund for Youth Scholar of State Key Laboratory of High Performance Ceramics and Superfine Microstructure.
PDF ( 2809 ) Cited
Export

EndNote

Ris

BibTeX

Microwave heating has many advantages such as rapidness, short reaction time, high efficiency and energy saving. The microwave-assisted syntheses usually exhibit order-of-magnitude enhancements in chemical reaction rate as compared to the conventional syntheses. As a result, the microwave heating as a novel heat source allows the rapid production of inorganic nanostructured materials in liquid phase, thus advancing rapidly toward its practical applications. On the other hand, the rich varieties of liquid solvents and their smart combinations will provide a great freedom for the rapid preparation of various calcium phosphate nanostructured materials, and more importantly for the control over the chemical composition, structure, size, morphology, and self-assembly. In recent years, to investigate new strategies for the preparation, control over structure/size/morphology, properties and applications of calcium phosphate nanostructured materials have become a hot topic in the biomedical research field. Up to now, various calcium phosphate nanostructured materials have been prepared by the microwave-assisted method in liquid phase, including nanoparticles, one-, two- and three-dimensional nanostructures. In addition, calcium phosphate nanostructured materials can be further functionalized through doping or adding different functional components by the microwave-assisted method. The as-prepared calcium phosphate based nanostructured materials are promising for applications in various fields, including drug delivery, protein adsorption, metal ion adsorption, bioimaging, and so on. This review discusses the advantages of microwave-assisted synthesis of nanostructured materials, and reviews the recent progress of microwave-assisted preparation of calcium phosphate nanostructured materials in liquid phase.In addition, some future research trends and directions of microwave-assisted synthesis of calcium phosphate nanostructured materials are proposed.

Contents
1 Introduction
2 Advantages of microwave-assisted preparation of nanostructured materials
3 Microwave-assisted preparation of calcium phosphate nanostructured materials using inorganic phosphate as phosphorus source in liquid phase
3.1 Structural control over calcium phosphate
3.2 Preparation of calcium phosphate nanostructured materials using the ultrasound-microwave combined method
4 Microwave-assisted preparation of calcium phosphate nanostructured materials using organic biomolecules as phosphorus source
5 Microwave-assisted preparation of multifunctional calcium phosphate nanostructured materials in liquid phase
5.1 Doped/composite calcium phosphate nanostructured materials
5.2 Multifunctional calcium phosphate nanostructured drug carriers
6 Conclusion

CLC Number: 

[1] Komarneni S, Roy R. Mater. Lett., 1985, 3: 165.
[2] Gedye R, Smith F, Westaway K, Ali H, Baldisera L, Laberge L, Rousell J. Tetrahedron Lett., 1986, 27: 279.
[3] Giguere R J, Bray T L, Duncan S M, Majetich G. Tetrahedron Lett., 1986, 27: 4945.
[4] Hayes B L. Microwave Synthesis:Chemistry at the Speed of Light. Matthews NC USA:CEM Publishing, 2002.
[5] Zhu Y J, Chen F. Chem. Rev., 2014, 114: 6462.
[6] Tzaphlidou M J. Biol. Phys., 2008, 34: 39.
[7] Weiner S, Wagner H D. Annu. Rev. Mater. Sci., 1998, 28: 271.
[8] Chen F, Zhu Y J. Curr. Nanosci., 2014, 10: 465.
[9] Dallinger D, Kappe C O. Chem. Rev., 2007, 107: 2563.
[10] Tompsett G A, Conner W C, Yngvesson K S. ChemPhysChem, 2006, 7: 296.
[11] Schanche J S. Mol. Divers., 2003, 7: 293.
[12] Gabriel C, Gabriel S, Grant E H, Halstead B S J, Mingos D M P. Chem. Soc. Rev., 1998, 27: 213.
[13] Collins M J. Future Med. Chem., 2010, 2: 151.
[14] Nadagouda M N, Speth T F, Varma R S. Acc. Chem. Res., 2011, 44: 469.
[15] Tsuji M, Hashimoto M, Nishizawa Y, Kubokawa M, Tsuji T. Chem. Eur. J., 2005, 11: 440.
[16] Zhang X Y, Liu Z. Nanoscale, 2012, 4: 707.
[17] Park S E, Chang J S, Hwang Y K, Kim D S, Jhung S H, Hwang J S. Catal. Surv. Asia, 2004, 8: 91.
[18] Baghbanzadeh M, Carbone L, Cozzoli P D, Kappe C O. Angew. Chem. Int. Edit., 2011, 50: 11312.
[19] Bogdal D, Prociak A, Michalowski S. Curr. Org. Chem., 2011, 15: 178.
[20] Lerner E, Sarig S, Azoury R. J. Mater. Sci. Mater. Med., 1991, 2: 138.
[21] Vaidhyanathan B, Rao K J. Bull. Mat. Sci., 1996, 19: 1163.
[22] Kundu P K, Waghode T S, Bahadur D, Datta D. Med. Biol. Eng. Comput., 1998, 36: 654.
[23] Lopez-Macipe A, Gomez-Morales J, Rodriguez-Clemente R. Adv. Mater., 1998, 10: 49.
[24] Yang Z W, Jiang Y S, Wang Y J, Ma L Y, Li F F. Mater. Lett., 2004, 58: 3586.
[25] Chen S, Ji J O, Zhou Z G, Gong L, Chen J D, Xu Y. Rare Metal Mat. Eng., 2008, 37: 94.
[26] Nazir R, Iqbal N, Khan A S, Akram A, Asif A, Chaudhry A A, Rehman I U, Hussain R. Ceram. Int., 2012, 38: 457.
[27] Venkateswarlu K, Bose A C, Rameshbabu N. Physica B, 2010, 405: 4256.
[28] Kalita S J, Verma S. Mater. Sci. Eng. C Mater. Biol. Appl., 2010, 30: 295.
[29] Smolen D, Chudoba T, Gierlotka S, Kedzierska A, Lojkowski W, Sobczak K, Swieszkowski W, Kurzydlowski K J. J. Nanomater., 2012, 2012: 841971.
[30] Katsuki H, Furuta S, Komarneni S. J. Am. Ceram. Soc., 1999, 82: 2257.
[31] Zhang D Y, Luo H M, Zheng L W, Wang K J, Li H X, Wang Y, Feng H X. J. Hazard. Mater., 2012, 241: 418.
[32] Arami H, Mohajerani M, Mazloumi M, Khalifehzadeh R, Lak A, Sadrnezhaad S K. J. Alloy. Compd., 2009, 469: 391.
[33] Kumar A R, Kalainathan S, Saral A M. Cryst. Res. Technol., 2010, 45: 776.
[34] Lak A, Mazloumi M, Mohajerani M S, Zanganeh S, Shayegh M R, Kajbafvala A, Arami H, Sadrnezhaad S K. J. Am. Ceram. Soc., 2008, 91: 3580.
[35] Kumar G S, Girija E K. Ceram. Int., 2013, 39: 8293.
[36] Kumar G S, Thamizhavel A, Girija E K. Mater. Lett., 2012, 76: 198.
[37] Sarig S, Kahana F. J. Cryst. Growth, 2002, 237: 55.
[38] Yoon S Y, Park Y M, Park S S, Stevens R, Park H C. Mater. Chem. Phys., 2005, 91: 48.
[39] Yang Z W, Jiang Y S, Wang A P, Li F F. J. Inorg. Mater., 2004, 19: 839.
[40] Park Y M, Ryu S C, Yoon S Y, Stevens R, Park H C. Mater. Chem. Phys., 2008, 109: 440.
[41] Krishna D S R, Siddharthan A, Seshadri S K, Kumar T S S. J. Mater. Sci. Mater. Med., 2007, 18: 1735.
[42] Han J K, Song H Y, Saito F, Lee B T. Mater. Chem. Phys., 2006, 99: 235.
[43] Nazir R, Khan A S, Ahmed A, Ur-Rehman A, Chaudhry A A, Rehman I U, Wong F S L. Ceram. Int., 2013, 39: 4339.
[44] Siddharthan A, Seshadri S K, Kumar T S S. J. Mater. Sci. Mater. Med., 2004, 15: 1279.
[45] Ran J G, Ran X, Gou L, Su B H, Huang C F, Li Y. Rare Metal Mat. Eng., 2007, 36: 162.
[46] Sha L, Liu Y Y, Zhang Q, Hu M, Jiang Y S. Mater. Chem. Phys., 2011, 129: 1138.
[47] Lee Y T, Youn M H, Paul R K, Lee K H, Song H Y. Mater. Chem. Phys., 2007, 104: 249.
[48] Jalota S, Bhaduri S B, Tas A C. J. Biomed. Mater. Res. Part A, 2006, 78A: 481.
[49] Murugan R, Ramakrishna S. Mater. Lett., 2004, 58: 230.
[50] Zhou H, Bhaduri S. J. Biomed. Mater. Res. Part B, 2012, 100B: 1142.
[51] Ma M G, Zhu Y J, Chang J. J. Phys. Chem. B, 2006, 110: 14226.
[52] Liao J G, Liu Q. Rare Metal Mat. Eng., 2014, 43: 1779.
[53] Vani R, Raja S B, Sridevi T S, Savithri K, Devaraj S N, Girija E K, Thamizhavel A, Kalkura S N. Nanotechnology, 2011, 22: 285701.
[54] Zhao X Y, Zhu Y J, Chen F, Lu B Q, Wu J. CrystEngComm, 2013, 15: 206.
[55] Amer W, Abdelouahdi K, Ramananarivo H R, Zahouily M, Fihri A, Djessas K, Zahouily K, Varma R S, Solhy A. CrystEngComm, 2014, 16: 543.
[56] Amer W, Abdelouandi K, Ramananarivo H R, Zahouily M, Fihri A, Coppel Y, Varma R S, Solhy A. Mater. Lett., 2013, 107: 189.
[57] Mishra V K, Srivastava S K, Asthana B P, Kumar D. J. Am. Ceram. Soc., 2012, 95: 2709.
[58] Kanchana P, Sekar C. Mater. Sci. Eng. C Mater. Biol. Appl., 2014, 42: 601.
[59] Liu J B, Li K W, Wang H, Zhu M K, Xu H Y, Yan H. Nanotechnology, 2005, 16: 82.
[60] Wang K W, Zhu Y J, Chen X Y, Zhai W Y, Wang Q, Chen F, Chang J A, Duan Y R. Chem. Asian J., 2010, 5: 2477.
[61] Wang K W, Zhu Y J, Chen F, Cheng G F, Huang Y H. Mater. Lett., 2011, 65: 2361.
[62] Wang Y Z, Fu Y. Mater. Lett., 2011, 65: 3388.
[63] Reardon P J T, Handoko A D, Li L, Huang J, Tang J W. J. Mater. Chem. B, 2013, 1: 6170.
[64] Chen F, Sun T W, Qi C, Wu J, Cui D X, Zhu Y J. J. Inorg. Mater., 2014, 29: 776.
[65] Gopi D, Indira J, Nithiya S, Kavitha L, Mudali U K, Kanimozhi K. Bull. Mater. Sci., 2013, 36: 799.
[66] Benzigar M R, Mane G P, Talapaneni S N, Varghese S, Anand C, Aldeyab S S, Balasubramanian V V, Vinu A. Chem. Lett., 2012, 41: 458.
[67] Banba Y, Umeda T, Kuroe H, Toyama T, Musha Y, Itatani K. J. Ceram. Soc. Jpn., 2013, 121: 901.
[68] Guo Y P, Yao Y B, Ning C Q, Chu L F, Guo Y J. Mater. Lett., 2011, 65: 1007.
[69] Pushpakanth S, Srinivasan B, Sreedhar B, Sastry T P. Mater. Chem. Phys., 2008, 107: 492.
[70] Jia N, Li S M, Ma M G, Sun R C. Mater. Lett., 2012, 68: 44.
[71] Islam M, Mishra P C, Patel R. J. Hazard. Mater., 2011, 189: 755.
[72] Ma M G, Zhu J F, Jia N, Li S M, Sun R C, Cao S W, Chen F. Carbohydr. Res., 2010, 345: 1046.
[73] Jia N, Li S M, Zhu J F, Ma M G, Xu F, Wang B, Sun R C. Mater. Lett., 2010, 64: 2223.
[74] Tang Q L, Wang K W, Zhu Y J, Chen F. Mater. Lett., 2009, 63: 1332.
[75] Guha A, Nayar S, Thatoi H N. Bioinspir. Biomim., 2010, 5: 024001.
[76] Hasret E, Ipekoglu M, Altintas S, Ipekoglu N A. Environ. Sci. Pollut. Res., 2012, 19: 2766.
[77] Elkady M F, Mahmoud M M, Abd-El-Rahman H M. J. Non-Cryst. Solids, 2011, 357: 1118.
[78] Huang Y, Zhou G, Zheng L S, Liu H F, Niu X F, Fan Y B. Nanoscale, 2012, 4: 2484.
[79] Chen F, Huang P, Qi C, Lu B Q, Zhao X Y, Li C, Wu J, Cui D X, Zhu Y J. J. Mater. Chem. B, 2014, 2: 7132.
[80] Putro J N, Handoyo N, Kristiani V, Soenjaya S A, Ki O L, Soetaredjo F E, Ju Y H, Ismadji S. Ceram. Int., 2014, 40: 11453.
[81] Zou Z Y, Lin K L, Chen L, Chang J. Ultrason. Sonochem., 2012, 19: 1174.
[82] Liang T, Qian J C, Yuan Y, Liu C S. J. Mater. Sci., 2013, 48: 5334.
[83] Poinern G E J, Ghosh M K, Ng Y J, Issa T B, Anand S, Singh P. J. Hazard. Mater., 2011, 185: 29.
[84] Zou Z Y, Liu X G, Chen L, Lin K L, Chang J. J. Mater. Chem., 2012, 22: 22637.
[85] Qi C, Zhu Y J, Zhao X Y, Lu B Q, Tang Q L, Zhao J, Chen F. Chem. Eur. J., 2013, 19: 981.
[86] Qi C, Zhu Y J, Chen F. ACS Appl. Mater. Interfaces, 2014, 6: 4310.
[87] Zhao J, Zhu Y J, Zheng J Q, Chen F, Wu J. Microporous Mesoporous Mater., 2013, 180: 79.
[88] Zhao X Y, Zhu Y J, Qi C, Chen F, Lu B Q, Zhao J, Wu J. Chem. Asian J., 2013, 8: 1313.
[89] Qi C, Zhu Y J, Chen F. Chem. Asian J., 2013, 8: 88.
[90] Qi C, Zhu Y J, Lu B Q, Zhao X Y, Zhao J, Chen F, Wu J. Chem. Eur. J., 2013, 19: 5332.
[91] Zhao J, Zhu Y J, Cheng G F, Ruan Y J, Sun T W, Chen F, Wu J, Zhao X Y, Ding G J. Mater. Lett., 2014, 124: 208.
[92] Qi C, Tang Q L, Zhu Y J, Zhao X Y, Chen F. Mater. Lett., 2012, 85: 71.
[93] Jin Y D. Acc. Chem. Res., 2014, 47: 138.
[94] McCarthy J R, Weissleder R. Adv. Drug Deliv. Rev., 2008, 60: 1241.
[95] Park K, Lee S, Kang E, Kim K, Choi K, Kwon I C. Adv. Funct. Mater., 2009, 19: 1553.
[96] Kanchana P, Lavanya N, Sekar C. Mater. Sci. Eng. C Mater. Biol. Appl., 2014, 35: 85.
[97] Chandra V S, Baskar G, Suganthi R V, Elayaraja K, Joshy M I A, Beaula W S, Mythili R, Venkatraman G, Kalkura S N. ACS Appl. Mater. Interfaces, 2012, 4: 1200.
[98] Chen F, Li C, Zhu Y J, Zhao X Y, Lu B Q, Wu J. Biomater. Sci., 2013, 1: 1074.
[99] Iqbal N, Kadir M R A, Malek N, Bin Mahmood N H, Murali M R, Kamarul T. Mater. Res. Bull., 2013, 48: 3172.
[100] Iqbal N, Kadir M R A, Malek N, Mahmood N H, Murali M R, Kamarul T. Mater. Lett., 2012, 89: 118.
[101] Rameshbabu N, Kumar T S S, Prabhakar T G, Sastry V S, Murty K, Rao K P. J. Biomed. Mater. Res. Part A, 2007, 80A: 581.
[102] Rameshbabu N, Kumar T S S, Rao K P. Bull. Mat. Sci., 2006, 29: 611.
[103] Ravi N D, Balu R, Kumar T S S. J. Am. Ceram. Soc., 2012, 95: 2700.
[104] Iqbal N, Kadir M R A, Mahmood N H, Salim N, Froemming G R A, Balaji H R, Kamarul T. Ceram. Int., 2014, 40: 4507.
[105] Arul K T, Ramya J R, Bhalerao G M, Kalkura S N. Ceram. Int., 2014, 40: 13771.
[106] Gopi D, Ramya S, Rajeswari D, Karthikeyan P, Kavitha L. Colloid Surf. A Physicochem. Eng. Asp., 2014, 451: 172.
[107] Nabiyouni M, Zhou H, Luchini T J F, Bhaduri S B. Mater. Sci. Eng. C Mater. Biol. Appl., 2014, 37: 363.
[108] Olson T Y, Orme C A, Han T Y J, Worsley M A, Rose K A, Satcher J H, Kuntz J D. CrystEngComm, 2012, 14: 6384.
[109] Mishra V K, Bhattacharjee B N, Parkash O, Kumar D, Rai S B. J. Alloy. Compd., 2014, 614: 283.
[110] Padmanabhan S K, Haq E U, Licciulli A. Curr. Appl. Phys., 2014, 14: 87.
[111] Weissleder R. Nat. Biotechnol., 2001, 19: 316.
[112] Yan J L, Estevez M C, Smith J E, Wang K M, He X X, Wang L, Tan W H. Nano Today, 2007, 2: 44.
[113] Bunzli J C G. Chem. Rev., 2010, 110: 2729.
[114] Han Y C, Wang X Y, Li S P. Curr. Nanosci., 2010, 6: 178.
[115] Chen F, Huang P, Zhu Y J, Wu J, Cui D X. Biomaterials, 2012, 33: 6447.
[116] Wagner D E, Eisenmann K M, Nestor-Kalinoski A L, Bhaduri S B. Acta Biomater., 2013, 9: 8422.
[117] Andre R S, Paris E C, Gurgel M F C, Rosa I L V, Paiva-Santos C O, Li M S, Varela J A, Longo E. J. Alloy. Compd., 2012, 531: 50.
[118] Yang C, Yang P P, Wang W X, Gai S L, Wang J, Zhang M L, Lin J. Solid State Sci., 2009, 11: 1923.
[119] Escudero A, Calvo M E, Rivera-Fernandez S, de la Fuente J M, Ocana M. Langmuir, 2013, 29: 1985.
[120] Chen F, Huang P, Zhu Y J, Wu J, Zhang C L, Cui D X. Biomaterials, 2011, 32: 9031.
[121] Li Z X, Barnes J C, Bosoy A, Stoddart J F, Zink J I. Chem. Soc. Rev., 2012, 41: 2590.
[122] Ding G, Zhu Y, Qi C, Lu B Q, Wu J, Chen F. J. Colloid Interface Sci., 2014, 443: 72.
[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Wanping Zhang, Ningning Liu, Qianjie Zhang, Wen Jiang, Zixin Wang, Dongmei Zhang. Stimuli-Responsive Polymer Microneedle System for Transdermal Drug Delivery [J]. Progress in Chemistry, 2023, 35(5): 735-756.
[3] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[4] Dang Zhang, Xi Wang, Lei Wang. Biomedical Applications of Enzyme-Powered Micro/Nanomotors [J]. Progress in Chemistry, 2022, 34(9): 2035-2050.
[5] Jin Zhou, Pengpeng Chen. Modification of 2D Nanomaterials and Their Applications in Environment Pollution Treatment [J]. Progress in Chemistry, 2022, 34(6): 1414-1430.
[6] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[7] Bin Li, Ying Yu, Guoxiang Xing, Jinfeng Xing, Wanxing Liu, Tianyong Zhang. Progress in Circularly Polarized Light Emission of Chiral Inorganic Nanomaterials [J]. Progress in Chemistry, 2022, 34(11): 2340-2350.
[8] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.
[9] Chenyang Qi, Jing Tu. Antibiotic-Free Nanomaterial-Based Antibacterial Agents:Current Status, Challenges and Perspectives [J]. Progress in Chemistry, 2022, 34(11): 2540-2560.
[10] Jiali Wang, Ling Zhu, Chen Wang, Shengbin Lei, Yanlian Yang. Nanotechnology for Detection of Circulating Tumor Cells and Extracellular Vesicles [J]. Progress in Chemistry, 2022, 34(1): 178-197.
[11] Yong Xie, Mingjie Han, Yuhao Xu, Chenyu Xiong, Ri Wang, Shanhong Xia. Inner Filter Effect for Environmental Monitoring [J]. Progress in Chemistry, 2021, 33(8): 1450-1460.
[12] Yonghang Chen, Xinfang Li, Weijiang Yu, Youxiang Wang. Stimuli-Responsive Polymeric Microneedles for Transdermal Drug Delivery [J]. Progress in Chemistry, 2021, 33(7): 1152-1158.
[13] Xiaodong Jing, Ying Sun, Bing Yu, Youqing Shen, Hao Hu, Hailin Cong. Rational Design of Tumor Microenvironment Responsive Drug Delivery Systems [J]. Progress in Chemistry, 2021, 33(6): 926-941.
[14] Huifeng Xu, Yongqiang Dong, Xi Zhu, Lishuang Yu. Novel Two-Dimensional MXene for Biomedical Applications [J]. Progress in Chemistry, 2021, 33(5): 752-766.
[15] Yuanyuan Liu, Yun Guo, Xiaogang Luo, Genyan Liu, Qi Sun. Detection of Metal Ions, Small Molecules and Large Molecules by Near-Infrared Fluorescent Probes [J]. Progress in Chemistry, 2021, 33(2): 199-215.